WOLFRAM NOTEBOOK

In[]:=
Graph[ResourceFunction["TraceGraph"][1+(1+1)(2+2)+
2
(3+4)
,TraceOriginal->Automatic],AspectRatio->1]
Out[]=
In[]:=
Graph[ResourceFunction["TraceGraph"][Sum[n^2,{n,4}],TraceOriginal->Automatic],AspectRatio->1]
Out[]=
In[]:=
Graph[ResourceFunction["TraceGraph"][Sum[n^2,{n,4}],TraceOriginal->True],AspectRatio->1]
Out[]=
In[]:=
Graph[ResourceFunction["TraceGraph"][Sum[n^2,{n,4}],TraceOriginal->False],AspectRatio->1]
Out[]=
In[]:=
ResourceFunction["TraceTree"][1+(1+1)(2+2)+
2
(3+4)
,TraceOriginal->Automatic]
Out[]=
In[]:=
Graph[ResourceFunction["TraceGraph"][Nest[(1+#)&,0,3],TraceOriginal->Automatic],AspectRatio->1]
Out[]=
In[]:=
Graph[ResourceFunction["TraceGraph"][(((1+1)+1)+1),TraceOriginal->Automatic],AspectRatio->1]
Out[]=
In[]:=
Graph[ResourceFunction["TraceGraph"][(((1+1)+1)+1),TraceOriginal->True],AspectRatio->1]
Out[]=

Causal Graphs

More Recursive Evaluation

Euclid’s Algorithm

Nestedly Recursive Functions

Multicomputation

More fully the evaluation graph is:
But in a sense this isn’t the only possible
But as soon as we start thinking of expressions symbolically, it’s clear this is not the only possible “evaluation path”.
Wolfram Cloud

You are using a browser not supported by the Wolfram Cloud

Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.


I understand and wish to continue anyway »

You are using a browser not supported by the Wolfram Cloud. Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.