WOLFRAM NOTEBOOK

In[]:=
SetDirectory[NotebookDirectory[]];
In[]:=
mm=
[]
MetamathImport
[File["DATA/set.mm"]];//AbsoluteTiming
Out[]=
{36.6201,Null}
In[]:=
tags=Import["DATA/setmm_tags.wxf"]
Out[]=
a1iiCLASSICAL FIRST-ORDER LOGIC WITH EQUALITY/Pre-logic/Inferences for assisting proof development,idiCLASSICAL FIRST-ORDER LOGIC WITH EQUALITY/Pre-logic/Inferences for assisting proof development,ax-mpCLASSICAL FIRST-ORDER LOGIC WITH EQUALITY/Propositional calculus/The axioms of propositional calculus,
41196
,amgmw2dSUPPLEMENTARY MATERIAL (USER'S MATHBOXES)/Mathbox for Kunhao Zheng/Weighted AM-GM Inequality,young2dSUPPLEMENTARY MATERIAL (USER'S MATHBOXES)/Mathbox for Kunhao Zheng/Weighted AM-GM Inequality
large output
show less
show more
show all
set size limit...
In[]:=
metamathAssoc=StringSplit[#,"/"][[1]]&/@tags
Out[]=
a1iiCLASSICAL FIRST-ORDER LOGIC WITH EQUALITY,idiCLASSICAL FIRST-ORDER LOGIC WITH EQUALITY,ax-mpCLASSICAL FIRST-ORDER LOGIC WITH EQUALITY,ax-1CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY,ax-2CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY,ax-3CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY,
41190
,aacllemSUPPLEMENTARY MATERIAL (USER'S MATHBOXES),amgmwlemSUPPLEMENTARY MATERIAL (USER'S MATHBOXES),amgmlemALTSUPPLEMENTARY MATERIAL (USER'S MATHBOXES),amgmw2dSUPPLEMENTARY MATERIAL (USER'S MATHBOXES),young2dSUPPLEMENTARY MATERIAL (USER'S MATHBOXES)
large output
show less
show more
show all
set size limit...
In[]:=
metamathDomains=Union[Values[metamathAssoc]];
In[]:=
metamathInfrastructure={"SUPPLEMENTARY MATERIAL (USER'S MATHBOXES)","GUIDES AND MISCELLANEA","COMPLEX HILBERT SPACE EXPLORER (DEPRECATED)","SUPPLEMENTARY MATERIAL (USER'S MATHBOXES)","COMPLEX TOPOLOGICAL VECTOR SPACES (DEPRECATED)"};
In[]:=
dropTheorems=Select[metamathAssoc,MatchQ[Alternatives@@metamathInfrastructure]];
In[]:=
metamathGraph=mm["DependencyGraph"];
In[]:=
mmvars=Cases[mm["Statements"],_[label_,{"wff"|"class"|"setvar",__},___]:>label];
In[]:=
mmgraph=Subgraph[metamathGraph,DeleteCases[VertexList[metamathGraph],Alternatives@@Join[mmvars,Keys@dropTheorems]]]
Out[]=
Graph
Vertex count: 26492
Edge count: 466655
In[]:=
metamathColors=AssociationThread[Complement[metamathDomains,metamathInfrastructure]Take[ColorData[54,"ColorList"],Length[Complement[metamathDomains,metamathInfrastructure]]]];
In[]:=
Graph[TransitiveReductionGraph[Subgraph[mmgraph,VertexOutComponent[mmgraph,"pythag"]]],GraphLayout"LayeredDigraphEmbedding",AspectRatio1/2,EdgeStyleGrayLevel[0.5,0.5],VertexStyle(#{Lighter@Lookup[metamathColors,metamathAssoc[#],LightGray]}&/@VertexList[mmgraph]),VertexSize0.75]
In[]:=
outsizes=Import["DATA/setmm-out-sizes.wxf"];
In[]:=
numberTheorems=Keys@Select[metamathAssoc,MatchQ["REAL AND COMPLEX NUMBERS"|"ELEMENTARY NUMBER THEORY"]];
In[]:=
setmmDescription[name_] := First @ StringCases[ Import[StringTemplate["http://us.metamath.org/mpeuni/``.html"] @ name, "Data"][[2]], "Description: " ~~ desc__ ~~ EndOfLine :> desc]
In[]:=
degrees=AssociationThread[VertexList[mmgraph],VertexInDegree[mmgraph]];
In[]:=
candidates=TakeLargest[KeySelect[3500<outsizes[#]<4000&]@AssociationMap[degrees,numberTheorems],10]
Out[]=
abscld232,lencl153,absidd98,absge0d87,wrdf85,prmuz273,hash069,absmuld61,absid57,hashsng54
In[]:=
KeyMap[setmmDescription,candidates]
Out[]=
Real closure of absolute value. (Contributed by Mario Carneiro, 29-May-2016.)232,The length of a word is a nonnegative integer. This corresponds to the definition in section 9.1 of [ AhoHopUll ] p. 318. (Contributed by Stefan O'Rear, 27-Aug-2015.)153,A nonnegative number is its own absolute value. (Contributed by Mario Carneiro, 29-May-2016.)98,Absolute value is nonnegative. (Contributed by Mario Carneiro, 29-May-2016.)87,A word is a zero-based sequence with a recoverable upper limit. (Contributed by Stefan O'Rear, 15-Aug-2015.)85,A prime number is an integer greater than or equal to 2. (Contributed by Paul Chapman, 17-Nov-2012.)73,The empty set has size zero. (Contributed by Mario Carneiro, 8-Jul-2014.)69,Absolute value distributes over multiplication. Proposition 10-3.7(f) of [ Gleason ] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)61,A nonnegative number is its own absolute value. (Contributed by NM, 11-Oct-1999.) (Revised by Mario Carneiro, 29-May-2016.)57,The size of a singleton. (Contributed by Paul Chapman, 26-Oct-2012.) (Proof shortened by Mario Carneiro, 13-Feb-2013.)54
In[]:=
mmReport=ResourceDataResourceObject
Name: Metamath Report
»
Type: DataResource
Description: Contributions to the Set.mm database
;
In[]:=
dates=Association@Normal[Rule@@@Values@mmReport[All,{"Label","Date"}]];
In[]:=
AssociationMap[dates,Keys@candidates]
Out[]=
abscld
Sun 29 May 2016
,lencl
Thu 27 Aug 2015
,absidd
Sun 29 May 2016
,absge0d
Sun 29 May 2016
,wrdf
Sat 15 Aug 2015
,prmuz2
Sat 17 Nov 2012
,hash0
Tue 8 Jul 2014
,absmuld
Sun 29 May 2016
,absid
Sun 29 May 2016
,hashsng
Wed 13 Feb 2013
In[]:=
metamathSections=DeleteCases[None]@ReplaceAll[{"CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY""logic","ZF (ZERMELO-FRAENKEL) SET THEORY""set theory","SUPPLEMENTARY MATERIAL (USER'S MATHBOXES)"None,"ZFC (ZERMELO-FRAENKEL WITH CHOICE) SET THEORY""set theory","TG (TARSKI-GROTHENDIECK) SET THEORY""set theory","REAL AND COMPLEX NUMBERS""numbers","ELEMENTARY NUMBER THEORY""numbers","BASIC STRUCTURES""algebra","BASIC CATEGORY THEORY""algebra","BASIC ORDER THEORY""algebra","BASIC ALGEBRAIC STRUCTURES""algebra","BASIC LINEAR ALGEBRA""algebra","BASIC TOPOLOGY""geometry & topology","BASIC REAL AND COMPLEX ANALYSIS""analysis","BASIC REAL AND COMPLEX FUNCTIONS""analysis","ELEMENTARY GEOMETRY""geometry & topology","GRAPH THEORY""abstract structures","GUIDES AND MISCELLANEA"None}]@DeleteCases[Alternatives@@metamathInfrastructure]@metamathAssoc;
In[]:=
(*keys=Union@Values[metamathSections];*)keys={"logic","set theory","numbers","algebra","geometry & topology","analysis","abstract structures"}
Out[]=
{logic,set theory,numbers,algebra,geometry & topology,analysis,abstract structures}
In[]:=
data=Counts/@KeySort@GroupBy[Values@Merge[KeyIntersection[{DateObject[#,"Year"]&/@dates,metamathSections}],Identity],First,Map@Last];
In[]:=
Min@dates
Out[]=
Wed 30 Sep 1992
In[]:=
BarChart[<|AssociationThread[keys,0],#|>&/@data,ChartLayout"Stacked",ChartStyle"Pastel",ChartLegendsSwatchLegend["Pastel",keys],Frame->True,FrameTicks{{Automatic,None},{MapIndexed[{First[#2],DateValue[#1,"YearShort"]}&,Keys[data]],None}}]
Out[]=
set theory
numbers
logic
geometry & topology
basic structures
analysis
algebra
Coloring
Wolfram Cloud

You are using a browser not supported by the Wolfram Cloud

Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.


I understand and wish to continue anyway »

You are using a browser not supported by the Wolfram Cloud. Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.