Boolean Axioms
Boolean Axioms
Not[Not[p]]==p
In[]:=
bax={"BooleanAxioms","HuntingtonAxioms","RobbinsAxioms","ShefferAxioms","HillmanAxioms","MeredithAxioms","OrNotBooleanAxioms","WolframAxioms","WolframAlternateAxioms","WolframCommutativeAxioms"};
In[]:=
#->AxiomaticTheory[#,"Operators"]&/@bax
Out[]=
{BooleanAxiomsAndCircleTimes,OrCirclePlus,NotOverBar,HuntingtonAxiomsOrCirclePlus,NotOverBar,RobbinsAxiomsOrCirclePlus,NotOverBar,ShefferAxiomsNandCenterDot,HillmanAxiomsNandCenterDot,MeredithAxiomsNandCenterDot,OrNotBooleanAxiomsOrCirclePlus,NotOverBar,WolframAxiomsNandCenterDot,WolframAlternateAxiomsNandCenterDot,WolframCommutativeAxiomsNandCenterDot}
In[]:=
Nest[Nand[#,#]&,p,2]/.Nand->CenterDot
Out[]=
(p·p)·(p·p)
In[]:=
#->FindEquationalProof[If[Length[AxiomaticTheory[#,"Operators"]]==1,(p·p)·(p·p)==p,OverBar[OverBar[p]]==p],#]&/@bax
Out[]=
$Aborted
In[]:=
ParallelMap[#->FindEquationalProof[If[Length[AxiomaticTheory[#,"Operators"]]==1,(p·p)·(p·p)==p,OverBar[OverBar[p]]==p],#]&,bax]
Out[]=
$Aborted
In[]:=
ParallelMap[#->FindEquationalProof[If[Length[AxiomaticTheory[#,"Operators"]]==1,(p·p)·(p·p)==p,OverBar[OverBar[p]]==p],#,TimeConstraint->60]&,bax]
Out[]=
BooleanAxiomsProofObject,HuntingtonAxiomsProofObject,RobbinsAxiomsFailure,ShefferAxiomsProofObject,HillmanAxiomsProofObject,MeredithAxiomsProofObject,OrNotBooleanAxiomsProofObject,WolframAxiomsProofObject,WolframAlternateAxiomsProofObject,WolframCommutativeAxiomsProofObject
In[]:=
TextGrid{#1,TraditionalForm[If[Length[AxiomaticTheory[#,"Operators"]]==1,(p·p)·(p·p)==p,OverBar[OverBar[p]]==p]/.{CenterDot->SmallCircle}],Column[TraditionalForm/@(ResourceFunction["UnformalizeSymbols"][Last/@AxiomaticTheory[#1]]/.{CircleTimes->Wedge,CirclePlus->Vee,CenterDot->SmallCircle})],#2["ProofLength"],Rotate[Graph[ProofObjectToTokenEventGraph[#2],VertexLabels->{_->None},ImageSize->{40,Automatic},VertexShapeFunction->Automatic],90Degree]}&@@@"BooleanAxioms"ProofObject,"HuntingtonAxioms"ProofObject,"OrNotBooleanAxioms"ProofObject,"ShefferAxioms"ProofObject,"HillmanAxioms"ProofObject,"MeredithAxioms"ProofObject,"WolframCommutativeAxioms"ProofObject,"WolframAxioms"ProofObject,"WolframAlternateAxioms"ProofObject,Frame->All
Out[]=
BooleanAxioms | p |
| 19 | |||||||
HuntingtonAxioms | p |
| 24 | |||||||
OrNotBooleanAxioms | p |
| 117 | |||||||
ShefferAxioms | (p∘p)∘(p∘p)p |
| 3 | |||||||
HillmanAxioms | (p∘p)∘(p∘p)p |
| 3 | |||||||
MeredithAxioms | (p∘p)∘(p∘p)p |
| 3 | |||||||
WolframCommutativeAxioms | (p∘p)∘(p∘p)p |
| 8 | |||||||
WolframAxioms | (p∘p)∘(p∘p)p |
| 54 | |||||||
WolframAlternateAxioms | (p∘p)∘(p∘p)p |
| 12 |
In[]:=
TextGrid{Column[TraditionalForm/@(ResourceFunction["UnformalizeSymbols"][Last/@AxiomaticTheory[#1]]/.{CircleTimes->Wedge,CirclePlus->Vee,CenterDot->SmallCircle})],TraditionalForm[If[Length[AxiomaticTheory[#,"Operators"]]==1,(p·p)·(p·p)==p,OverBar[OverBar[p]]==p]/.{CenterDot->SmallCircle}],#2["ProofLength"],Rotate[Graph[ProofObjectToTokenEventGraph[#2],VertexLabels->{_->None},ImageSize->{40,Automatic},VertexShapeFunction->Automatic],90Degree]}&@@@"BooleanAxioms"ProofObject,"HuntingtonAxioms"ProofObject,"OrNotBooleanAxioms"ProofObject,"ShefferAxioms"ProofObject,"HillmanAxioms"ProofObject,"MeredithAxioms"ProofObject,"WolframCommutativeAxioms"ProofObject,"WolframAxioms"ProofObject,"WolframAlternateAxioms"ProofObject,Frame->All
Out[]=
| p | 19 | |||||||
| p | 24 | |||||||
| p | 117 | |||||||
| (p∘p)∘(p∘p)p | 3 | |||||||
| (p∘p)∘(p∘p)p | 3 | |||||||
| (p∘p)∘(p∘p)p | 3 | |||||||
| (p∘p)∘(p∘p)p | 8 | |||||||
| (p∘p)∘(p∘p)p | 54 | |||||||
| (p∘p)∘(p∘p)p | 12 |
Boolean Expressions
Boolean Expressions
Entailment Cone for Notable Theorems
Entailment Cone for Notable Theorems
Here should include notable theorems that are axioms
Here should include notable theorems that are axioms
Use WA with translated version of theorems....
Use WA with translated version of theorems....