WOLFRAM NOTEBOOK

Boolean Axioms

Not[Not[p]]==p
In[]:=
bax={"BooleanAxioms","HuntingtonAxioms","RobbinsAxioms","ShefferAxioms","HillmanAxioms","MeredithAxioms","OrNotBooleanAxioms","WolframAxioms","WolframAlternateAxioms","WolframCommutativeAxioms"};
In[]:=
#->AxiomaticTheory[#,"Operators"]&/@bax
Out[]=
{BooleanAxiomsAndCircleTimes,OrCirclePlus,NotOverBar,HuntingtonAxiomsOrCirclePlus,NotOverBar,RobbinsAxiomsOrCirclePlus,NotOverBar,ShefferAxiomsNandCenterDot,HillmanAxiomsNandCenterDot,MeredithAxiomsNandCenterDot,OrNotBooleanAxiomsOrCirclePlus,NotOverBar,WolframAxiomsNandCenterDot,WolframAlternateAxiomsNandCenterDot,WolframCommutativeAxiomsNandCenterDot}
In[]:=
Nest[Nand[#,#]&,p,2]/.Nand->CenterDot
Out[]=
(p·p)·(p·p)
In[]:=
#->FindEquationalProof[If[Length[AxiomaticTheory[#,"Operators"]]==1,(p·p)·(p·p)==p,OverBar[OverBar[p]]==p],#]&/@bax
Out[]=
$Aborted
In[]:=
ParallelMap[#->FindEquationalProof[If[Length[AxiomaticTheory[#,"Operators"]]==1,(p·p)·(p·p)==p,OverBar[OverBar[p]]==p],#]&,bax]
Out[]=
$Aborted
In[]:=
ParallelMap[#->FindEquationalProof[If[Length[AxiomaticTheory[#,"Operators"]]==1,(p·p)·(p·p)==p,OverBar[OverBar[p]]==p],#,TimeConstraint->60]&,bax]
Out[]=
BooleanAxiomsProofObject
Logic: EquationalLogic
Steps: 19
Theorem:
p
p
,HuntingtonAxiomsProofObject
Logic: EquationalLogic
Steps: 24
Theorem:
p
p
,RobbinsAxiomsFailure
Message:
No proof could be found within 60 seconds.
Tag:
TimedOut
,ShefferAxiomsProofObject
Logic: EquationalLogic
Steps: 3
Theorem: (p·p)·(p·p)p
,HillmanAxiomsProofObject
Logic: EquationalLogic
Steps: 3
Theorem: (p·p)·(p·p)p
,MeredithAxiomsProofObject
Logic: EquationalLogic
Steps: 3
Theorem: (p·p)·(p·p)p
,OrNotBooleanAxiomsProofObject
Logic: EquationalLogic
Steps: 117
Theorem:
p
p
,WolframAxiomsProofObject
Logic: EquationalLogic
Steps: 54
Theorem: (p·p)·(p·p)p
,WolframAlternateAxiomsProofObject
Logic: EquationalLogic
Steps: 12
Theorem: (p·p)·(p·p)p
,WolframCommutativeAxiomsProofObject
Logic: EquationalLogic
Steps: 8
Theorem: (p·p)·(p·p)p
In[]:=
TextGrid{#1,TraditionalForm[If[Length[AxiomaticTheory[#,"Operators"]]==1,(p·p)·(p·p)==p,OverBar[OverBar[p]]==p]/.{CenterDot->SmallCircle}],Column[TraditionalForm/@(ResourceFunction["UnformalizeSymbols"][Last/@AxiomaticTheory[#1]]/.{CircleTimes->Wedge,CirclePlus->Vee,CenterDot->SmallCircle})],#2["ProofLength"],Rotate[Graph[ProofObjectToTokenEventGraph[#2],VertexLabels->{_->None},ImageSize->{40,Automatic},VertexShapeFunction->Automatic],90Degree]}&@@@"BooleanAxioms"ProofObject
Logic: EquationalLogic
Steps: 19
Theorem:
p
p
,"HuntingtonAxioms"ProofObject
Logic: EquationalLogic
Steps: 24
Theorem:
p
p
,"OrNotBooleanAxioms"ProofObject
Logic: EquationalLogic
Steps: 117
Theorem:
p
p
,"ShefferAxioms"ProofObject
Logic: EquationalLogic
Steps: 3
Theorem: (p·p)·(p·p)p
,"HillmanAxioms"ProofObject
Logic: EquationalLogic
Steps: 3
Theorem: (p·p)·(p·p)p
,"MeredithAxioms"ProofObject
Logic: EquationalLogic
Steps: 3
Theorem: (p·p)·(p·p)p
,"WolframCommutativeAxioms"ProofObject
Logic: EquationalLogic
Steps: 8
Theorem: (p·p)·(p·p)p
,"WolframAxioms"ProofObject
Logic: EquationalLogic
Steps: 54
Theorem: (p·p)·(p·p)p
,"WolframAlternateAxioms"ProofObject
Logic: EquationalLogic
Steps: 12
Theorem: (p·p)·(p·p)p
,Frame->All
Out[]=
BooleanAxioms
p
p
abba
a(bc)abac
ab
b
a
a(b
b
)a
abba
abc(ab)(ac)
19
HuntingtonAxioms
p
p
a(bc)(ab)c
abba
a
b
a
b
a
24
OrNotBooleanAxioms
p
p
cb
a
d
d
(
a
c)
a
117
ShefferAxioms
(pp)(pp)p
(aa)(aa)a
a(b(bb))aa
(a(bc))(a(bc))((bb)a)((cc)a)
3
HillmanAxioms
(pp)(pp)p
(aa)(ab)a
a(ab)a(bb)
a(a(bc))b(b(ac))
3
MeredithAxioms
(pp)(pp)p
a(b(ac))((cb)b)a
(aa)(ba)a
3
WolframCommutativeAxioms
(pp)(pp)p
abba
(ab)(a(bc))a
8
WolframAxioms
(pp)(pp)p
((bc)a)(b((ba)b))a
54
WolframAlternateAxioms
(pp)(pp)p
(a((ca)a))(c(ba))c
12
In[]:=
TextGrid{Column[TraditionalForm/@(ResourceFunction["UnformalizeSymbols"][Last/@AxiomaticTheory[#1]]/.{CircleTimes->Wedge,CirclePlus->Vee,CenterDot->SmallCircle})],TraditionalForm[If[Length[AxiomaticTheory[#,"Operators"]]==1,(p·p)·(p·p)==p,OverBar[OverBar[p]]==p]/.{CenterDot->SmallCircle}],#2["ProofLength"],Rotate[Graph[ProofObjectToTokenEventGraph[#2],VertexLabels->{_->None},ImageSize->{40,Automatic},VertexShapeFunction->Automatic],90Degree]}&@@@"BooleanAxioms"ProofObject
Logic: EquationalLogic
Steps: 19
Theorem:
p
p
,"HuntingtonAxioms"ProofObject
Logic: EquationalLogic
Steps: 24
Theorem:
p
p
,"OrNotBooleanAxioms"ProofObject
Logic: EquationalLogic
Steps: 117
Theorem:
p
p
,"ShefferAxioms"ProofObject
Logic: EquationalLogic
Steps: 3
Theorem: (p·p)·(p·p)p
,"HillmanAxioms"ProofObject
Logic: EquationalLogic
Steps: 3
Theorem: (p·p)·(p·p)p
,"MeredithAxioms"ProofObject
Logic: EquationalLogic
Steps: 3
Theorem: (p·p)·(p·p)p
,"WolframCommutativeAxioms"ProofObject
Logic: EquationalLogic
Steps: 8
Theorem: (p·p)·(p·p)p
,"WolframAxioms"ProofObject
Logic: EquationalLogic
Steps: 54
Theorem: (p·p)·(p·p)p
,"WolframAlternateAxioms"ProofObject
Logic: EquationalLogic
Steps: 12
Theorem: (p·p)·(p·p)p
,Frame->All
Out[]=
abba
a(bc)abac
ab
b
a
a(b
b
)a
abba
abc(ab)(ac)
p
p
19
a(bc)(ab)c
abba
a
b
a
b
a
p
p
24
cb
a
d
d
(
a
c)
a
p
p
117
(aa)(aa)a
a(b(bb))aa
(a(bc))(a(bc))((bb)a)((cc)a)
(pp)(pp)p
3
(aa)(ab)a
a(ab)a(bb)
a(a(bc))b(b(ac))
(pp)(pp)p
3
a(b(ac))((cb)b)a
(aa)(ba)a
(pp)(pp)p
3
abba
(ab)(a(bc))a
(pp)(pp)p
8
((bc)a)(b((ba)b))a
(pp)(pp)p
54
(a((ca)a))(c(ba))c
(pp)(pp)p
12

Boolean Expressions

Entailment Cone for Notable Theorems

Here should include notable theorems that are axioms

Use WA with translated version of theorems....

Wolfram Cloud

You are using a browser not supported by the Wolfram Cloud

Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.


I understand and wish to continue anyway »

You are using a browser not supported by the Wolfram Cloud. Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.