WOLFRAM NOTEBOOK

In[]:=
ggx=GraphRemoveLooseEnds[NestGraphTagged[n{2n+1,3n+1},0,12],All]
Out[]=
In[]:=
Graph[ggx,VertexLabels->(#->Row[IntegerDigits[#,6]]&/@VertexList[ggx])]
Out[]=
In[]:=
GraphRemoveLooseEnds[%]
Out[]=
Graph[]
In[]:=
BaseForm[(nn->{2n+1,3n+1})/@Range[10],6]
Out[]//BaseForm=
{
1
6
{
3
6
,
4
6
},
2
6
{
5
6
,
11
6
},
3
6
{
11
6
,
14
6
},
4
6
{
13
6
,
21
6
},
5
6
{
15
6
,
24
6
},
10
6
{
21
6
,
31
6
},
11
6
{
23
6
,
34
6
},
12
6
{
25
6
,
41
6
},
13
6
{
31
6
,
44
6
},
14
6
{
33
6
,
51
6
}}

EvenQ

In[]:=
NestGraphTagged[n|->If[EvenQ[n],{n/2,n+1},{2n,n+1}],0,20]
Out[]=
In[]:=
NestGraphTagged[n|->If[EvenQ[n],{n/2,n+1},{2n,n+2}],0,20]
Out[]=
In[]:=
NestGraphTagged[n|->If[EvenQ[n],{n/2,None},{2n,n+2}],3,20]
Out[]=
In[]:=
NestGraphTagged[n|->If[EvenQ[n],{n/2,2n},{2n,n+2}],1,10]
Out[]=
In[]:=
NestGraphTagged[n|->If[EvenQ[n],{n/2,2n},{n+2,2n}],3,10]
Out[]=
In[]:=
NestGraphTagged[n|->If[EvenQ[n],{n/2,None},{3n,n+1}],3,15]
Out[]=

3n+1

Forbidden Subwords

Transitive Reduction

Period Doubling

Path Counting

Polynomial Merging

Non-Integer

Complex Numbers

Complex Trees

Tip equations?

Legending

Embedding

[[[ Not taking into account path weights ... ]]]

Collections of Numbers

Wolfram Cloud

You are using a browser not supported by the Wolfram Cloud

Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.


I understand and wish to continue anyway »

You are using a browser not supported by the Wolfram Cloud. Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.