In[]:=
ggx=GraphRemoveLooseEnds[NestGraphTagged[n{2n+1,3n+1},0,12],All]
Out[]=
In[]:=
Graph[ggx,VertexLabels->(#->Row[IntegerDigits[#,6]]&/@VertexList[ggx])]
Out[]=
In[]:=
GraphRemoveLooseEnds[%]
Out[]=
Graph[]
In[]:=
BaseForm[(nn->{2n+1,3n+1})/@Range[10],6]
Out[]//BaseForm=
{{,},{,},{,},{,},{,},{,},{,},{,},{,},{,}}
1
6
3
6
4
6
2
6
5
6
11
6
3
6
11
6
14
6
4
6
13
6
21
6
5
6
15
6
24
6
10
6
21
6
31
6
11
6
23
6
34
6
12
6
25
6
41
6
13
6
31
6
44
6
14
6
33
6
51
6
EvenQ
EvenQ
In[]:=
NestGraphTagged[n|->If[EvenQ[n],{n/2,n+1},{2n,n+1}],0,20]
Out[]=
In[]:=
NestGraphTagged[n|->If[EvenQ[n],{n/2,n+1},{2n,n+2}],0,20]
Out[]=
In[]:=
NestGraphTagged[n|->If[EvenQ[n],{n/2,None},{2n,n+2}],3,20]
Out[]=
In[]:=
NestGraphTagged[n|->If[EvenQ[n],{n/2,2n},{2n,n+2}],1,10]
Out[]=
In[]:=
NestGraphTagged[n|->If[EvenQ[n],{n/2,2n},{n+2,2n}],3,10]
Out[]=
In[]:=
NestGraphTagged[n|->If[EvenQ[n],{n/2,None},{3n,n+1}],3,15]
Out[]=
3n+1
3n+1
Forbidden Subwords
Forbidden Subwords
Transitive Reduction
Transitive Reduction
Period Doubling
Period Doubling
Path Counting
Path Counting
Polynomial Merging
Polynomial Merging
Non-Integer
Non-Integer
Complex Numbers
Complex Numbers
Complex Trees
Complex Trees
Tip equations?
Tip equations?
Legending
Legending
Embedding
Embedding
[[[ Not taking into account path weights ... ]]]
Collections of Numbers
Collections of Numbers