In[]:=
NestGraphTagged[n|->{2n,n+1},1,5,"StateLabeling"->True]
Out[]=
In[]:=
NestGraphTagged[n|->{2n,n+1},1,10]
Out[]=
In[]:=
Log[2.,500*^6]
Out[]=
28.8974
In[]:=
n|->1+-n,1+Conjugate-n
1
2
4
1
2
4
Out[]=
Functionn,1+-n,1+Conjugate-n
1
2
4
1
2
4
In[]:=
Fold[{n,i}|->1+{c,c}[[i]]n,{1,1,2,1,2,1}]
In[]:=
Fold[{n,i}|->1+{a+bI,a-bI}[[i]]n,{1,1,2,1,2,1}]//Expand
Out[]=
1+a+++++b+b+b++a+2+2++2++a+
2
a
3
a
4
a
5
a
2
a
4
a
2
b
2
b
2
a
2
b
3
a
2
b
3
b
2
a
3
b
4
b
4
b
5
b
In[]:=
Fold[{n,i}|->1+{c,c}[[i]]n,{1,2,2,1,1,1}]
Out[]=
1+c(1+c(1+c(1+Conjugate[c](1+Conjugate[c]))))
In[]:=
Tuples[{1,2},3]
Out[]=
{{1,1,1},{1,1,2},{1,2,1},{1,2,2},{2,1,1},{2,1,2},{2,2,1},{2,2,2}}
In[]:=
Expand[Fold[{n,i}|->1+{a+bI,a-bI}[[i]]n,#]]&/@Tuples[{1,2},3]
Out[]=
{1+a++b+2ab-,1+a+-b+,1+a++b+,1+a+-b-2ab-,1+a+2+b+4ab-2,1+a+2-b+2,1+a+2+b+2,1+a+2-b-4ab-2}
2
a
2
b
2
a
2
b
2
a
2
b
2
a
2
b
2
a
2
b
2
a
2
b
2
a
2
b
2
a
2
b
In[]:=
Expand[Fold[{n,i}|->1+{a+bI,a-bI}[[i]]n,#]]&/@Tuples[{1,2},2]
Out[]=
{1+a+b,1+a-b,1+2a+2b,1+2a-2b}
In[]:=
DeleteCases[Flatten[Outer[Equal,%,%]],True]
Out[]=
{1+a+b1+a-b,1+a+b1+2a+2b,1+a+b1+2a-2b,1+a-b1+a+b,1+a-b1+2a+2b,1+a-b1+2a-2b,1+2a+2b1+a+b,1+2a+2b1+a-b,1+2a+2b1+2a-2b,1+2a-2b1+a+b,1+2a-2b1+a-b,1+2a-2b1+2a+2b}
SubtractSides
In[]:=
ComplexExpand[1+a+b1+a-b]
In[]:=
SubtractSides[1+a+b1+a-b]
Out[]=
2b0
In[]:=
Coefficient[1+a+Ib,I]
In[]:=
1+a+Ib/.I->i
Out[]=
1+a+bi
In[]:=
EquationsFromSequences[seqs_List]:=Module[{u=Expand[Fold[{n,i}|->1+{a+bI,a-bI}[[i]]n,1,#]]&/@seqs,eqns},eqns=Thread[#==0]&/@(ComplexExpand[ReIm[First[#]]]&/@Union[SubtractSides/@DeleteCases[Flatten[Outer[Equal,u,u]],True|False]])]
In[]:=
ExprsFromSequences[seqs_]:=Expand[Fold[{n,i}|->1+{a+bI,a-bI}[[i]]n,1,#]]&/@seqs
In[]:=
ExprsFromSequences[Tuples[{1,2},2]]
Out[]=
{1+a++b+2ab-,1+a+-b+,1+a++b+,1+a+-b-2ab-}
2
a
2
b
2
a
2
b
2
a
2
b
2
a
2
b
In[]:=
EquationsFromSequences[Tuples[{1,2},2]]
Out[]=
{{True,-2b0},{True,2b0},{True,-2b-4ab0},{True,2b+4ab0},{-20,-2ab0},{-20,-2b-2ab0},{-20,2ab0},{-20,2b+2ab0},{20,-2ab0},{20,-2b-2ab0},{20,2ab0},{20,2b+2ab0}}
2
b
2
b
2
b
2
b
2
b
2
b
2
b
2
b
In[]:=
Solve[#,{a,b},Reals]&/@%
Out[]=
{{b0}},{{b0}},a,{b0},a,{b0},{{b0}},{{b0}},{{b0}},{{b0}},{{b0}},{{b0}},{{b0}},{{b0}}
In[]:=
EquationsFromSequences[Tuples[{1,2},3]]
Out[]=
In[]:=
Solve[#,{a,b},Reals]&/@%
Out[]=
{{b0}},{{b0}},{{b0}},{{b0}},{{b0}},{{b0}},{{b0}},{{b0}},{{b0}},{{b0}},{{b0}},{{b0}},a-,b,{{b0}},a-,b,{{b0}},{{b0}},{{b0}},a-,b,{{b0}},a-,b,{{b0}},{{b0}},{{b0}},b,b,b,{{b0}},{b0},b-,a-,b0,a-,b-,a-,b,{{b0}},{{b0}},b,a-,b0,a-,b-,a-,b,{{b0}},b,b,b,{{b0}},{{b0}},{b0},b-,a-,b0,a-,b-,a-,b,{{b0}},{{b0}},b,a-,b0,a-,b-,a-,b
1
2
1
2
1
2
1
2
1+2a+3
,b2
a
1+2a+3
,{{b0}},{{b0}},{{b0}},{{b0}},{{b0}},{{b0}},b2
a
1
2
1
2
3
2
1
2
3
2
1
2
1
2
3
2
1
2
3
2
1+2a+3
,b2
a
1+2a+3
,{{b0}},{{b0}},{{b0}},{{b0}},{{b0}},{{b0}},b2
a
1
2
1
2
3
2
1
2
3
2
1
2
1
2
3
2
1
2
3
2
In[]:=
a+bI/.a-,b
1
2
3
2
Out[]=
-+
1
2
3
2
I.e. not of bounded size... (unlike the other cases...)
Multiple Word Lengths Together
Multiple Word Lengths Together