a+b b+a
a+b b+a
x_+y_<->y_+x_
Multiway system of all possible results...
Then show a proof path of one of them....
Then show a proof path of one of them....
[[ Applying it to an expression, and to a relation ]]
In[]:=
TwoWayMultiReplaceGraphList[{plus[a_,b_]<->plus[b_,a_]},2,"CoSubstitutionLemmas"->True]
Out[]=
,
,
In[]:=
TwoWayMultiReplaceGraphList[{plus[a_,b_]<->plus[b_,a_]},2,"CoSubstitutionLemmas"->False]
Out[]=
,
,
In[]:=
TwoWayMultiReplaceGraphList[{a_⊕b_b_⊕a_,a_⊕(b_⊕c_)(a_⊕b_)⊕c_},2,"CoSubstitutionLemmas"->False]
Out[]=
,
,
In[]:=
VertexList/@%
Out[]=
{{a_⊕b_b_⊕a_,a_⊕(b_⊕c_)(a_⊕b_)⊕c_},{a_⊕b_b_⊕a_,a_⊕b_a_⊕b_,a_⊕(b_⊕c_)(a_⊕b_)⊕c_,a_⊕(b_⊕c_)(a_⊕c_)⊕b_,(a_⊕b_)⊕c_(c_⊕a_)⊕b_,a_⊕(b_⊕c_)(b_⊕a_)⊕c_,a_⊕(b_⊕c_)c_⊕(a_⊕b_),(a_⊕b_)⊕c_(a_⊕b_)⊕c_,a_⊕(b_⊕c_)a_⊕(b_⊕c_)},{a_⊕b_b_⊕a_,a_⊕b_a_⊕b_,a_⊕(b_⊕c_)(a_⊕b_)⊕c_,a_⊕(b_⊕c_)(a_⊕c_)⊕b_,(a_⊕b_)⊕c_(c_⊕a_)⊕b_,a_⊕(b_⊕c_)(b_⊕a_)⊕c_,a_⊕(b_⊕c_)c_⊕(a_⊕b_),(a_⊕b_)⊕c_(a_⊕b_)⊕c_,a_⊕(b_⊕c_)a_⊕(b_⊕c_),a_⊕(b_⊕c_)b_⊕(c_⊕a_),(a_⊕b_)⊕c_a_⊕(c_⊕b_),(a_⊕b_)⊕c_b_⊕(a_⊕c_),a_⊕(b_⊕c_)a_⊕(c_⊕b_),(a_⊕b_)⊕c_c_⊕(a_⊕b_),a_⊕(b_⊕c_)(b_⊕c_)⊕a_,(a_⊕b_)⊕c_a_⊕(b_⊕c_),(a_⊕b_)⊕c_(b_⊕c_)⊕a_,(a_⊕b_)⊕c_(b_⊕a_)⊕c_,(a_⊕b_)⊕c_c_⊕(b_⊕a_),a_⊕(b_⊕c_)(c_⊕b_)⊕a_,(a_⊕b_)⊕c_(c_⊕b_)⊕a_,(a_⊕b_)⊕c_(a_⊕c_)⊕b_,(a_⊕b_)⊕c_b_⊕(c_⊕a_),a_⊕(b_⊕c_)(c_⊕a_)⊕b_,a_⊕(b_⊕c_)b_⊕(a_⊕c_),a_⊕(b_⊕c_)c_⊕(b_⊕a_)}}
In[]:=
Union/@%
Out[]=
{{a_⊕(b_⊕c_)(a_⊕b_)⊕c_,a_⊕b_b_⊕a_},{(a_⊕b_)⊕c_(a_⊕b_)⊕c_,(a_⊕b_)⊕c_(c_⊕a_)⊕b_,a_⊕(b_⊕c_)(a_⊕b_)⊕c_,a_⊕(b_⊕c_)(a_⊕c_)⊕b_,a_⊕(b_⊕c_)(b_⊕a_)⊕c_,a_⊕(b_⊕c_)a_⊕(b_⊕c_),a_⊕(b_⊕c_)c_⊕(a_⊕b_),a_⊕b_a_⊕b_,a_⊕b_b_⊕a_},{(a_⊕b_)⊕c_(a_⊕b_)⊕c_,(a_⊕b_)⊕c_(a_⊕c_)⊕b_,(a_⊕b_)⊕c_(b_⊕a_)⊕c_,(a_⊕b_)⊕c_(b_⊕c_)⊕a_,(a_⊕b_)⊕c_(c_⊕a_)⊕b_,(a_⊕b_)⊕c_(c_⊕b_)⊕a_,(a_⊕b_)⊕c_a_⊕(b_⊕c_),(a_⊕b_)⊕c_a_⊕(c_⊕b_),(a_⊕b_)⊕c_b_⊕(a_⊕c_),(a_⊕b_)⊕c_b_⊕(c_⊕a_),(a_⊕b_)⊕c_c_⊕(a_⊕b_),(a_⊕b_)⊕c_c_⊕(b_⊕a_),a_⊕(b_⊕c_)(a_⊕b_)⊕c_,a_⊕(b_⊕c_)(a_⊕c_)⊕b_,a_⊕(b_⊕c_)(b_⊕a_)⊕c_,a_⊕(b_⊕c_)(b_⊕c_)⊕a_,a_⊕(b_⊕c_)(c_⊕a_)⊕b_,a_⊕(b_⊕c_)(c_⊕b_)⊕a_,a_⊕(b_⊕c_)a_⊕(b_⊕c_),a_⊕(b_⊕c_)a_⊕(c_⊕b_),a_⊕(b_⊕c_)b_⊕(a_⊕c_),a_⊕(b_⊕c_)b_⊕(c_⊕a_),a_⊕(b_⊕c_)c_⊕(a_⊕b_),a_⊕(b_⊕c_)c_⊕(b_⊕a_),a_⊕b_a_⊕b_,a_⊕b_b_⊕a_}}
In[]:=
TwoWayMultiReplaceGraphList[{a_⊕b_b_⊕a_,a_⊕(b_⊕c_)(a_⊕b_)⊕c_},2,"CoSubstitutionLemmas"->False,"Deduplicate"->True]
Out[]=
,
,
In[]:=
VertexList/@%
Out[]=
{{a_⊕b_b_⊕a_,a_⊕(b_⊕c_)(a_⊕b_)⊕c_},{a_⊕b_b_⊕a_,a_⊕b_a_⊕b_,a_⊕(b_⊕c_)(a_⊕b_)⊕c_,a_⊕(b_⊕c_)(a_⊕c_)⊕b_,(a_⊕b_)⊕c_(c_⊕a_)⊕b_,a_⊕(b_⊕c_)(b_⊕a_)⊕c_,a_⊕(b_⊕c_)c_⊕(a_⊕b_),(a_⊕b_)⊕c_(a_⊕b_)⊕c_,a_⊕(b_⊕c_)a_⊕(b_⊕c_)},{a_⊕b_b_⊕a_,a_⊕b_a_⊕b_,a_⊕(b_⊕c_)(a_⊕b_)⊕c_,a_⊕(b_⊕c_)(a_⊕c_)⊕b_,(a_⊕b_)⊕c_(c_⊕a_)⊕b_,a_⊕(b_⊕c_)(b_⊕a_)⊕c_,a_⊕(b_⊕c_)c_⊕(a_⊕b_),(a_⊕b_)⊕c_(a_⊕b_)⊕c_,a_⊕(b_⊕c_)a_⊕(b_⊕c_),(a_⊕b_)⊕c_(b_⊕c_)⊕a_,(a_⊕b_)⊕c_c_⊕(b_⊕a_),a_⊕(b_⊕c_)(c_⊕b_)⊕a_,(a_⊕b_)⊕c_a_⊕(c_⊕b_),(a_⊕b_)⊕c_(c_⊕b_)⊕a_,(a_⊕b_)⊕c_(a_⊕c_)⊕b_,(a_⊕b_)⊕c_b_⊕(c_⊕a_),a_⊕(b_⊕c_)(c_⊕a_)⊕b_,(a_⊕b_)⊕c_c_⊕(a_⊕b_),a_⊕(b_⊕c_)b_⊕(c_⊕a_),(a_⊕b_)⊕c_b_⊕(a_⊕c_),a_⊕(b_⊕c_)b_⊕(a_⊕c_),a_⊕(b_⊕c_)c_⊕(b_⊕a_),a_⊕(b_⊕c_)a_⊕(c_⊕b_),(a_⊕b_)⊕c_(b_⊕a_)⊕c_,a_⊕(b_⊕c_)(b_⊕c_)⊕a_}}
In[]:=
TwoWayMultiReplaceGraphList[{a_⊕b_b_⊕a_,a_⊕(b_⊕c_)(a_⊕b_)⊕c_},3,"CoSubstitutionLemmas"->False,"Deduplicate"->True]
Out[]=
,
,
,
In[]:=
VertexList/@%
Out[]=
{{a_⊕b_b_⊕a_,a_⊕(b_⊕c_)(a_⊕b_)⊕c_},{a_⊕b_b_⊕a_,a_⊕b_a_⊕b_,a_⊕(b_⊕c_)(a_⊕b_)⊕c_,a_⊕(b_⊕c_)(a_⊕c_)⊕b_,(a_⊕b_)⊕c_(c_⊕a_)⊕b_,a_⊕(b_⊕c_)(b_⊕a_)⊕c_,a_⊕(b_⊕c_)c_⊕(a_⊕b_),(a_⊕b_)⊕c_(a_⊕b_)⊕c_,a_⊕(b_⊕c_)a_⊕(b_⊕c_)},{a_⊕b_b_⊕a_,a_⊕b_a_⊕b_,a_⊕(b_⊕c_)(a_⊕b_)⊕c_,a_⊕(b_⊕c_)(a_⊕c_)⊕b_,(a_⊕b_)⊕c_(c_⊕a_)⊕b_,a_⊕(b_⊕c_)(b_⊕a_)⊕c_,a_⊕(b_⊕c_)c_⊕(a_⊕b_),(a_⊕b_)⊕c_(a_⊕b_)⊕c_,a_⊕(b_⊕c_)a_⊕(b_⊕c_),(a_⊕b_)⊕c_(b_⊕c_)⊕a_,(a_⊕b_)⊕c_c_⊕(b_⊕a_),a_⊕(b_⊕c_)(c_⊕b_)⊕a_,(a_⊕b_)⊕c_a_⊕(c_⊕b_),(a_⊕b_)⊕c_(c_⊕b_)⊕a_,(a_⊕b_)⊕c_(a_⊕c_)⊕b_,(a_⊕b_)⊕c_b_⊕(c_⊕a_),a_⊕(b_⊕c_)(c_⊕a_)⊕b_,(a_⊕b_)⊕c_c_⊕(a_⊕b_),a_⊕(b_⊕c_)b_⊕(c_⊕a_),(a_⊕b_)⊕c_b_⊕(a_⊕c_),a_⊕(b_⊕c_)b_⊕(a_⊕c_),a_⊕(b_⊕c_)c_⊕(b_⊕a_),a_⊕(b_⊕c_)a_⊕(c_⊕b_),(a_⊕b_)⊕c_(b_⊕a_)⊕c_,a_⊕(b_⊕c_)(b_⊕c_)⊕a_},{a_⊕b_b_⊕a_,a_⊕b_a_⊕b_,a_⊕(b_⊕c_)(a_⊕b_)⊕c_,a_⊕(b_⊕c_)(a_⊕c_)⊕b_,(a_⊕b_)⊕c_(c_⊕a_)⊕b_,a_⊕(b_⊕c_)(b_⊕a_)⊕c_,a_⊕(b_⊕c_)c_⊕(a_⊕b_),(a_⊕b_)⊕c_(a_⊕b_)⊕c_,a_⊕(b_⊕c_)a_⊕(b_⊕c_),(a_⊕b_)⊕c_(b_⊕c_)⊕a_,(a_⊕b_)⊕c_c_⊕(b_⊕a_),a_⊕(b_⊕c_)(c_⊕b_)⊕a_,(a_⊕b_)⊕c_a_⊕(c_⊕b_),(a_⊕b_)⊕c_(c_⊕b_)⊕a_,(a_⊕b_)⊕c_(a_⊕c_)⊕b_,(a_⊕b_)⊕c_b_⊕(c_⊕a_),a_⊕(b_⊕c_)(c_⊕a_)⊕b_,(a_⊕b_)⊕c_c_⊕(a_⊕b_),a_⊕(b_⊕c_)b_⊕(c_⊕a_),(a_⊕b_)⊕c_b_⊕(a_⊕c_),a_⊕(b_⊕c_)b_⊕(a_⊕c_),a_⊕(b_⊕c_)c_⊕(b_⊕a_),a_⊕(b_⊕c_)a_⊕(c_⊕b_),(a_⊕b_)⊕c_(b_⊕a_)⊕c_,a_⊕(b_⊕c_)(b_⊕c_)⊕a_}}
In[]:=
Length/@%
Out[]=
{2,9,25,25}
In[]:=
TwoWayMultiReplaceGraphList[{x_⊕y_y_⊕x_},3,"CoSubstitutionLemmas"->False,"Deduplicate"->True,"Canonicalize"->False]
Out[]=
,
,
,
Applying the axiom to an expression to make a MW graph
Applying the axiom to an expression to make a MW graph
Applying the axiom to a statement
Applying the axiom to a statement
We could add a relation about ↔ itself
Things get tricky because we don’t want the substitution to replace the two-way rule...
Applying the axiom starting just with itself
Applying the axiom starting just with itself
But using only the axiom every time....
[Cosubstitution]
[Cosubstitution]
[Is this a natural mathematical operation, or is it metamathematical?]
Understandable version:
[[ Need to make a token-event graph of this ]]
Accumulative lemmas
Accumulative lemmas
Correspondence to FindEquationalProof
Correspondence to FindEquationalProof
Indicate a single path which will have various accumulating lemmas ... and both substitution and co-substitution
(We can make this FEP if the destination node is a ↔ a )
Going beneath binary operators
Going beneath binary operators
To be human-level math, it has to be in a cloud....
To be human-level math, it has to be in a cloud....
[ Finding alternative fluid-level math ; what is the homotopy relative to current math ]
[ Finding alternative fluid-level math ; what is the homotopy relative to current math ]
Branchial graphs and the historical evolution of math
Branchial graphs and the historical evolution of math
Fixed axioms vs. accumulative lemmas
Fixed axioms vs. accumulative lemmas
Correspondence with FindEquationalProof
Correspondence with FindEquationalProof
Pure substitution vs. other entailments
Pure substitution vs. other entailments
? parasubstitution
? parasubstitution
The notion of truth vs stating statements
The notion of truth vs stating statements
Going beneath named mathematics
Going beneath named mathematics
Finding Plus in the wild / identifying Plus in the ruliad
Finding Plus in the wild / identifying Plus in the ruliad
To establish that a particular combinator lump “is” Plus, show the Peano axioms for it ..... though this isn’t quite enough
To establish that a particular combinator lump “is” Plus, show the Peano axioms for it ..... though this isn’t quite enough
The theorems of all possible non-standard arithmetics will also show up in the combinator soup