WolframModel[{{1,2},{2,3}}{{3,2},{2,3},{3,4},{1,4}},{{0,0},{0,0}},10,"FinalState"]//HypergraphPlot
In[]:=
Out[]=
RulePlot[WolframModel[{{1,2},{2,3}}{{3,2},{2,3},{3,4},{1,4}}]]
In[]:=
Out[]=
HypergraphPlot/@WolframModel[{{1,2},{2,3}}{{3,2},{2,3},{3,4},{1,4}},{{0,0},{0,0}},6,"StatesList"]
In[]:=
Out[]=
HypergraphPlot/@WolframModel[{{x,y},{y,z}}{{z,y},{y,z},{z,w},{x,w}},{{0,0},{0,0}},6,"StatesList"]
In[]:=
Out[]=
HypergraphPlot[Map[Hash,#,{2}],ImageSizeTiny]&/@NestList[SubsetReplace[#,w:{{x_,y_},{y_,z_}}->Sequence[{z,y},{y,z},{z,w},{x,w}]]&,{{1,2},{2,3}},4]
In[]:=
Out[]=
HypergraphPlot[Map[Hash,#,{2}],ImageSizeTiny]&/@NestList[SubsetReplace[#,{{x_,y_},{y_,z_}}:>Sequence@@Module[{w},{{z,y},{y,z},{z,w},{x,w}}]]&,{{1,1},{1,1}},8]
In[]:=
Out[]=
WolframModel[{{1,2},{2,3}}{{3,2},{2,3},{3,4},{1,4}},{{0,0},{0,0}},12,"FinalState"]//HypergraphPlot
In[]:=
Out[]=
HypergraphDimensionEstimateList[WolframModel[{{1,2},{2,3}}{{3,2},{2,3},{3,4},{1,4}},{{0,0},{0,0}},12,"FinalState"]]
In[]:=
{1.989±0.013,2.559±0.028,2.637±0.030,2.558±0.032,2.60±0.04,2.70±0.04,2.74±0.04,2.76±0.05,2.76±0.05,2.77±0.06,2.70±0.06,2.54±0.07,2.35±0.07,2.16±0.07,1.96±0.07,1.72±0.07,1.44±0.07}
Out[]=
ListLinePlot[%]
In[]:=
Out[]=
RulePlot[WolframModel[{{1,2},{2,3}}{{3,2},{2,3},{3,4},{1,4}}]]
In[]:=
Out[]=
WolframModel[{{1,2},{2,3}}{{1,1},{3,1},{3,4},{2,4}},{{0,0},{0,0}},13,"FinalState"]//HypergraphPlot
In[]:=
Out[]=