GetRules[{n1_,k1_}{n2_,k2_}]:=Import[StringJoin["/Users/sw/Dropbox/Physics/Data/RuleEnumerations/",ToString[n1],ToString[k1],"-",ToString[n2],ToString[k2],"c.wxf"]]
In[]:=
ParallelMapMonitored[TotalCausalInvariantQ[{#},1]&,GetRules[{2,2}{3,2}]]
In[]:=
Out[]=
Counts[%]
In[]:=
True2669,False2033
Out[]=
ParallelMapMonitored[TotalCausalInvariantQ[{#},2]&,GetRules[{2,2}{3,2}]]
In[]:=
Out[]=
Counts[%]
In[]:=
True2791,False1911
Out[]=
MultiwaySystem[WolframModel[{{x,y},{x,z}}{{x,z},{x,w},{y,w},{z,w}}],{{0,0},{0,0}},2,"StatesGraph"]
In[]:=
Out[]=
MultiwaySystem[WolframModel[{{x,y},{x,z}}{{x,z},{x,w},{y,w},{z,w}}],{{0,0},{0,0}},4,"StatesGraphStructure"]
In[]:=
Out[]=
MultiwaySystem[WolframModel[{{x,y},{x,z}}{{x,z},{x,w},{y,w},{z,w}}],{{0,0},{0,0}},5,"StatesGraphStructure"]
In[]:=
Out[]=
MultiwaySystem[WolframModel[{{x,y},{x,z}}{{x,z},{x,w},{y,w},{z,w}}],{{0,0},{0,0}},6,"StatesGraphStructure"]
In[]:=
Out[]=
MultiwaySystem[WolframModel[{{x,y},{x,z}}{{x,z},{x,w},{y,w},{z,w}}],{{0,0},{0,0}},4,"CausalGraphStructure"]
In[]:=
$Aborted
Out[]=
MultiwaySystem[WolframModel[{{x,y},{x,z}}{{x,z},{x,w},{y,w},{z,w}}],{{0,0},{0,0}},2,"CausalGraphStructure"]
In[]:=
Out[]=
MultiwaySystem[WolframModel[{{x,y},{x,z}}{{x,z},{x,w},{y,w},{z,w}}],{{0,0},{0,0}},3,"CausalGraphStructure"]
In[]:=
Out[]=
MultiwaySystem[WolframModel[{{x,y},{x,z}}{{x,z},{x,w},{y,w},{z,w}}],{{0,0},{0,0}},2,"EvolutionEventsGraph"]
In[]:=
Out[]=
MultiwaySystem[WolframModel[{{x,y},{x,z}}{{x,z},{x,w},{y,w},{z,w}}],{{0,0},{0,0}},3,"EvolutionEventsGraph"]
In[]:=
Out[]=
MultiwaySystem[WolframModel[{{x,y},{x,z}}{{x,z},{x,w},{y,w},{z,w}}],{{0,0},{0,0}},4,"EvolutionEventsGraph"]
In[]:=
Out[]=
LayeredGraphPlot[%]
In[]:=
Out[]=
TotalCausalInvariantQ[{{{x,y},{x,z}}{{x,z},{x,w},{y,w},{z,w}}},1]
In[]:=
True
Out[]=
TotalCausalInvariantQ[{{{x,y},{x,z}}{{x,z},{x,w},{y,w},{z,w}}},2]
In[]:=
True
Out[]=
WolframModel[{{{x,y},{x,z}}{{x,z},{x,w},{y,w},{z,w}}},{{0,0},{0,0}},10,"CausalGraph"]
In[]:=
Out[]=
LayeredGraphPlot[%]
In[]:=
Out[]=
WolframModel[{{{x,y},{x,z}}{{x,z},{x,w},{y,w},{z,w}}},{{0,0},{0,0}},12,"CausalGraph"]
In[]:=
Out[]=
GraphPlot3D[%]
In[]:=
Out[]=
WolframModel[{{{x,y},{x,z}}{{x,z},{x,w},{y,w},{z,w}}},{{0,0},{0,0}},14,"CausalGraph"]
In[]:=
Out[]=
GraphNeighborhoodVolumes[%,{1}]
In[]:=
1{1,3,8,19,44,99,222,504,1139,2502,4481,5470,5606,5613}
Out[]=
First[Values[%]]
In[]:=
{1,3,8,19,44,99,222,504,1139,2502,4481,5470,5606,5613}
Out[]=
Ratios[%]//N
In[]:=
{3.,2.66667,2.375,2.31579,2.25,2.24242,2.27027,2.25992,2.19666,1.79097,1.22071,1.02486,1.00125}
Out[]=
ListLinePlot[%]
In[]:=
Out[]=
WolframModel[{{{x,y},{x,z}}{{x,z},{x,w},{y,w},{z,w}}},{{0,0},{0,0}},16,"CausalGraph"]
In[]:=
Out[]=
GraphNeighborhoodVolumes[%,{1}]
In[]:=
1{1,3,8,19,44,99,222,504,1143,2599,5835,11810,17147,18822,18998,19007}
Out[]=
​
Ratios[First[Values[%]]]//N
In[]:=
{3.,2.66667,2.375,2.31579,2.25,2.24242,2.27027,2.26786,2.27384,2.24509,2.02399,1.45191,1.09768,1.00935,1.00047}
Out[]=
ListLinePlot[%]
In[]:=
Out[]=
WolframModel[{{{x,y},{x,z}}{{x,z},{x,w},{y,w},{z,w}}},{{0,0},{0,0}},16]
In[]:=
Out[]=
%["VertexCountList"]
In[]:=
WolframModelEvolutionObject
::unknownProperty
:Property "VertexCountList should be one of Properties.
Out[]=
Length/@%382["StatesList"]
In[]:=
{2,4,8,14,24,46,84,154,284,526,966,1784,3302,6078,11228,20694,38016}
Out[]=
Ratios[%]//N
In[]:=
{2.,2.,1.75,1.71429,1.91667,1.82609,1.83333,1.84416,1.85211,1.8365,1.84679,1.8509,1.8407,1.84732,1.84307,1.83705}
Out[]=
ListLinePlot[%]
In[]:=
Out[]=