In[]:=
HypergraphAutomorphismGroup/@({{1,2},{1,3}}{{1,2},{1,4},{2,4},{3,4}})
Out[]=
PermutationGroup[{Cycles[{{2,3}}]}]PermutationGroup[{}]
​
In[]:=
EnumerateHypergraphs[{{2,2}}]
Out[]=
{{{1,1},{1,1}},{{1,1},{1,2}},{{1,1},{2,1}},{{1,2},{1,2}},{{1,2},{2,1}},{{1,2},{1,3}},{{1,2},{2,3}},{{1,2},{3,2}}}
In[]:=
HypergraphAutomorphismGroup/@%
Out[]=
{PermutationGroup[{}],PermutationGroup[{}],PermutationGroup[{}],PermutationGroup[{}],PermutationGroup[{Cycles[{{1,2}}]}],PermutationGroup[{Cycles[{{2,3}}]}],PermutationGroup[{}],PermutationGroup[{Cycles[{{1,3}}]}]}
In[]:=
#->HypergraphAutomorphismGroup[#]&/@EnumerateHypergraphs[{{3,2}}]
Out[]=
In[]:=
Length[GroupElements[PermutationGroup[{Cycles[{{3,4}}],Cycles[{{2,3}}]}]]]
Out[]=
6
{{1,2},{2,3},{3,1}}XXXX
In[]:=
#->HypergraphAutomorphismGroup[#]&/@EnumerateHypergraphs[{{1,3}}]
Out[]=
{{{1,1,1}}PermutationGroup[{}],{{1,1,2}}PermutationGroup[{}],{{1,2,1}}PermutationGroup[{}],{{1,2,2}}PermutationGroup[{}],{{1,2,3}}PermutationGroup[{}]}
In[]:=
#->HypergraphAutomorphismGroup[#]&/@EnumerateHypergraphs[{{2,3}}]
Out[]=
In[]:=
GroupElements[PermutationGroup[{Cycles[{{1,2},{3,4}}]}]]
Out[]=
{Cycles[{}],Cycles[{{1,2},{3,4}}]}
In[]:=
#Length[GroupElements[HypergraphAutomorphismGroup[#]]]&/@EnumerateHypergraphs[{{2,3}}]
Out[]=
In[]:=
#Length[GroupElements[HypergraphAutomorphismGroup[#]]]&/@EnumerateHypergraphs[{{3,2}}]
Out[]=
In[]:=
WolframModelPlot[{{1,2},{1,3},{1,4}}]
Out[]=
In[]:=
#Length[GroupElements[HypergraphAutomorphismGroup[#]]]&/@EnumerateHypergraphs[{{3,3}}]
Out[]=
In[]:=
Counts[Last/@%]
Out[]=
13042,2204,310,612
In[]:=
#GroupOrder[HypergraphAutomorphismGroup[#]]&/@EnumerateHypergraphs[{{4,2}}]
Out[]=

LHS has larger automorphism than RHS  broken symmetry

Effective rules

“WolframModelRuleProduct2”

Testing

For each LHS, just identify all possible namings