WOLFRAM NOTEBOOK

Consider a local match that can go in two ways....

In[]:=
GridGraph[{10,10}]
Out[]=
In[]:=
GeneralizedGridGraph[{4{"Directed","Circular"},4{"Directed","Circular"}}]
Out[]=
In[]:=
WolframModel[{{1,2}}{{1,3},{3,2},{3,3}},List@@@EdgeList@GeneralizedGridGraph[{4{"Directed","Circular"},4{"Directed","Circular"}}],3,"StatesPlotsList"]
Out[]=
In[]:=
WolframModel[{{1,2},{2,4}}{{1,3},{3,2},{3,3},{2,5},{5,5},{5,4}},List@@@EdgeList@GeneralizedGridGraph[{4{"Directed","Circular"},4{"Directed","Circular"}}],2,"StatesPlotsList"]
Out[]=
In[]:=
WolframModel[{{1,2},{2,4}}{{1,3},{3,2},{3,3},{2,5},{5,5},{5,4}},List@@@EdgeList@GeneralizedGridGraph[{4{"Directed"},4{"Directed"}}],2,"StatesPlotsList"]
Out[]=
In[]:=
WolframModel[{{1,2},{2,4}}{{1,3},{3,2},{3,3},{2,5},{5,5},{5,4}},List@@@EdgeList@GeneralizedGridGraph[{6{"Directed"},6{"Directed"}}],2,"StatesPlotsList"]
Out[]=
In[]:=
WolframModel[{{1,2},{2,4}}{{1,2,4}},List@@@EdgeList@GeneralizedGridGraph[{10{"Directed"},10{"Directed"}}],2,"StatesPlotsList"]
Out[]=
In[]:=
WolframModel[{{1,2},{2,4}}{{1,2,2},{2,4,4}},List@@@EdgeList@GeneralizedGridGraph[{10{"Directed"},10{"Directed"}}],2,"StatesPlotsList"]
Out[]=
In[]:=
WolframModel[{{1,2},{2,4}}{{1,2,2},{2,4,4}},List@@@EdgeList@GeneralizedGridGraph[{10{"Directed"},10{"Directed"}}],3,"StatesPlotsList","EventOrderingFunction""Random"]
Out[]=
In[]:=
WolframModel[{{1,2},{2,4}}{{1,2,2},{2,4,4}},List@@@EdgeList@GeneralizedGridGraph[{4{"Directed"},4{"Directed"}}],2,"EventsStatesPlotsList"]
Out[]=

Edge destroyer

Edges are independent, but you can’t an edge again... (because it’s gone)

A rule with an automorphism

Multiple matches: with different identifications of elements

Powers of rules

Analogous to applying to LHSs for total causal invariance......

Implications for this rule

Within each fiber, there is invariance wrt relabeling
Initial conditions with these elements swapped with converge (immediately)

We want the effective theory for all relevant initial conditions.....

One-step effective rule

For each one, get the permutations, then combine them.....
This implies there are 11 nontrivial permutations that leave the original effective rule the same.....

Strings

Degeneracies of labeling are not possible in strings....
Wolfram Cloud

You are using a browser not supported by the Wolfram Cloud

Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.


I understand and wish to continue anyway »

You are using a browser not supported by the Wolfram Cloud. Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.