EnumerateHypergraphs[{{2,3}}]
In[]:=
Out[]=
ParallelMapMonitored[#->FindCanonicalHypergraph[Map[#[[{3,2,1}]]&,#,{1}]]&,EnumerateHypergraphs[{{2,3}}]]
In[]:=
Out[]=
Graph[%]
In[]:=
Out[]=
This is additional isomorphism beyond hypergraph isomorphism, and it’s not very important....
Function[perm,ParallelMapMonitored[#->FindCanonicalHypergraph[Map[#[[perm]]&,#,{1}]]&,EnumerateHypergraphs[{{2,3}}]]]/@Rest[Permutations[Range[3]]]
In[]:=
Out[]=
Graph/@%
In[]:=
Out[]=
Function[perm,Graph[ParallelMapMonitored[#->FindCanonicalHypergraph[Map[#[[perm]]&,#,{1}]]&,EnumerateHypergraphs[{{3,3}}]]]]/@Rest[Permutations[Range[3]]]
In[]:=
Out[]=
Strings
Strings
Graph[#Reverse[#]&/@Tuples[{1,0},4]]
In[]:=
Out[]=
Graph[#Reverse[#]&/@Tuples[{2,1,0},4]]
In[]:=
Out[]=
Graph[#RotateLeft[#]&/@Tuples[{1,0},4]]
In[]:=
Out[]=
LHS of rule can be permuted....