In[]:=
With[{t=3},With[{g=MultiwayTuringMachine[AllDeltaTMRules[{2,2}],{{1,t+1,0},Table[0,2t+1]},t,"StatesGraphStructure",VertexSize1]},HighlightGraph[g,Style[Subgraph[g,PathGraph[ToString/@TuringMachine[2506,{{1,t+1,0},Table[0,2t+1]},t]]],Thick,Red]]]]
Out[]=
In[]:=
With[{t=4},With[{g=MultiwayTuringMachine[AllDeltaTMRules[{2,2}],{{1,t+1,0},Table[0,2t+1]},t,"StatesGraphStructure",VertexSize1]},HighlightGraph[g,Style[Subgraph[g,PathGraph[ToString/@TuringMachine[2506,{{1,t+1,0},Table[0,2t+1]},t]]],Thick,Red]]]]
Out[]=
In[]:=
With[{t=4},With[{g=MultiwayTuringMachine[AllDeltaTMRules[{2,2}],{{1,t+1,0},Table[0,2t+1]},t,"StatesGraphStructure",VertexSize1]},HighlightGraph[g,Style[Subgraph[g,PathGraph[ToString/@TuringMachine[#,{{1,t+1,0},Table[0,2t+1]},t]]],Thick,Red]&/@Range[4]]]]
Out[]=
Are any states unreachable by any specific Turing machine?
In[]:=
With[{t=4},With[{g=MultiwayTuringMachine[AllDeltaTMRules[{2,2}],{{1,t+1,0},Table[0,2t+1]},t,"StatesGraphStructure",VertexSize1]},HighlightGraph[g,Style[Subgraph[g,PathGraph[ToString/@TuringMachine[#,{{1,t+1,0},Table[0,2t+1]},t]]],Thick,Red]&/@Range[0,4095]]]]
Out[]=
A counter TM will eventually reach every tape configuration
A counter TM will eventually reach every tape configuration
[[the colors of the cells correspond to the reverse of the base 2 digit sequences of successive numbers.]]
[[[ this includes an unfollowable edge ]]]
Different initial condition
Different initial condition
Region of configuration space reached by deterministic Turing machines
Region of configuration space reached by deterministic Turing machines
Limiting case: they don’t interact at all. Then asymptotically one could reach 4096 new states at every step.
What are the tentacles?
What are the tentacles?