WOLFRAM NOTEBOOK

In[]:=
ResourceFunction["MultiwaySystem"][{"A""BBB","BB""A"},{"A"},6,"StatesGraph","IncludeStepNumber"True]
Out[]=
In[]:=
ResourceFunction["MultiwaySystem"][{"A""BBB","BB""A"},{"A"},6,"BranchialGraph"]
Out[]=
At every step, we take every state, and apply a function to it....
In[]:=
MultiwayNestList[f_List,states_List,t_Integer]:=NestList[Flatten[Outer[Construct,f,#,1]]&,states,t]
In[]:=
MultiwayNestList[{-1-#&,#&},{1},5]
Out[]=
In[]:=
MultiwayNestList[{1+(1+I)#/2&,1+(1-I)#/2&},{1},4]
Out[]=
In[]:=
ComplexListPlot[Flatten[MultiwayNestList[{1+(1+I)#/2&,1+(1-I)#/2&},{1},8]],PlotStylePointSize[.01]]
Out[]=
In[]:=
ComplexListPlot[Flatten[Last@MultiwayNestList[{1+(1+I)#/2&,1+(1-I)#/2&},{1},12]],PlotStylePointSize[.01]]
Out[]=
What happens with path weighting?
In[]:=
Counts[Values[Counts[Last@MultiwayNestList[{1+(1+I)#/2&,1+(1-I)#/2&},{1},7]]]]
Out[]=
1108,210
In[]:=
Counts[Values[Counts[Last@MultiwayNestList[{1+(1+I)#/2&,1+(1-I)#/2&},{1},8]]]]
Out[]=
1210,223
In[]:=
Counts[Values[Counts[Last@MultiwayNestList[{1+(1+I)#/2&,1+(1-I)#/2&},{1},9]]]]
Out[]=
1412,250
In[]:=
ComplexListPlot[Flatten[Last@MultiwayNestList[{1+(-1+I)#/2&,1+(-1-I)#/2&},{1},12]],PlotStylePointSize[.01]]
Out[]=

1D version

Analogy

Ordinary multiway system has states with discrete labeling, e.g. ABBBAAAA

First step: use continuous numbers to represent states : i.e. there is a natural geometry on the set of states

Analog of causal invariance is various questions about the growth rate of distinct numbers (and the dimension of the limit set)

What is the analog of branchial space? What is its relation to the geometry of states?

I.e. the geometry of state space is probably the same as the geometry of branchial space

What is the analog of rulial space?

Start from z=1, then apply 1 ± α z for all values of α
If |α| < 1/2 all trees are Cantor-like
Above some modulus of α
Wolfram Cloud

You are using a browser not supported by the Wolfram Cloud

Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.


I understand and wish to continue anyway »

You are using a browser not supported by the Wolfram Cloud. Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.