1,2  1,2

EnumerateWolframModelRules[{{1,2}}{{1,2}}]
In[]:=
Out[]=
EvolutionPicture2[#,Table[{i,i+1},{i,10}],5]&/@%
In[]:=
Out[]=
InteractiveListSelectorSW[WolframModel[#,Table[{i,i+1},{i,10}],10,"LayeredCausalGraph"]#&/@%113]
In[]:=
Out[]=
FinalPicture2[#,Table[{0,0},{i,10}],5]&/@%113
In[]:=
Out[]=
InteractiveListSelectorSW[WolframModel[#,Table[{0,0},{i,10}],10,"LayeredCausalGraph"]#&/@%113]
In[]:=
Out[]=
InteractiveListSelectorSW[WolframModel[#,Append[Table[{i,i+1},{i,10}],{5,5}],10,"LayeredCausalGraph"]#&/@%113]
In[]:=
Out[]=
InteractiveListSelectorSW[FinalPicture2[#,Append[Table[{i,i+1},{i,10}],{5,5}],10]#&/@%113]
In[]:=
Out[]=
InteractiveListSelectorSW[FinalPicture2[#,Table[{i,Mod[i+1,21]},{i,0,20}],20]#&/@%113]
In[]:=
Out[]=
InteractiveListSelectorSW[FinalPicture2[#,Append[Table[{i,Mod[i+1,21]},{i,0,20}],{0,0}],20]#&/@%113]
In[]:=
Out[]=
InteractiveListSelectorSW[WolframModel[#,Append[Table[{i,Mod[i+1,21]},{i,0,20}],{0,0}],20,"LayeredCausalGraph"]#&/@%113]
In[]:=
Out[]=

1,3  1,3

all13=EnumerateWolframModelRules[{{1,3}}{{1,3}}]
In[]:=
Out[]=
InteractiveListSelectorSW[WolframModel[#,Table[{0,0,0},{i,10}],10,"LayeredCausalGraph"]#&/@all13]
In[]:=
Out[]=

Also consider multiple same-size rules? [ CA behavior]

2,2  2,2

allrules=EnumerateWolframModelRules[{{2,2}}{{2,2}}];
In[]:=
Length[allrules]
In[]:=
562
Out[]=
InteractiveListSelectorSW[ParallelMapMonitored[FinalPicture2[#,Table[{i,i+1},{i,10}],5]#&,allrules]]
In[]:=
Out[]=
ParallelMapMonitored[EvolutionPicture2[#,Table[{i,i+1},{i,10}],10]#&,{{{1,2},{2,3}}{{1,2},{1,3}},{{1,2},{2,3}}{{1,3},{3,2}}}]
In[]:=
Out[]=
InteractiveListSelectorSW[ParallelMapMonitored[WolframModel[#,Table[{i,i+1},{i,10}],10,"LayeredCausalGraph"]#&,allrules]]
In[]:=
Out[]=
​
InteractiveListSelectorSW[ParallelMapMonitored[WolframModel[#,Table[{i,i+1},{i,20}],30,"LayeredCausalGraph"]#&,{{{1,2},{2,3}}{{1,3},{2,3}},{{1,2},{2,3}}{{1,2},{1,3}},{{1,2},{2,3}}{{2,1},{3,1}},{{1,2},{2,3}}{{3,1},{3,1}},{{1,2},{2,3}}{{3,1},{3,4}}}]]
In[]:=
Out[]=
{{{1,2},{2,3}}{{1,3},{2,3}},{{1,2},{2,3}}{{1,2},{1,3}},{{1,2},{2,3}}{{2,1},{3,1}},{{1,2},{2,3}}{{3,1},{3,1}},{{1,2},{2,3}}{{3,1},{3,4}}}
InteractiveListSelectorSW[ParallelMapMonitored[FinalPicture2[#,Table[{i,i+1},{i,20}],30]#&,{{{1,2},{2,3}}{{1,3},{2,3}},{{1,2},{2,3}}{{1,2},{1,3}},{{1,2},{2,3}}{{2,1},{3,1}},{{1,2},{2,3}}{{3,1},{3,1}},{{1,2},{2,3}}{{3,1},{3,4}}}]]
In[]:=
Out[]=
XYifyRule[{{1,2},{2,3}}{{2,1},{3,1}}]
In[]:=
{{x,y},{y,z}}{{y,x},{z,x}}
Out[]=
RulePlot[WolframModel[{{1,2},{2,3}}{{2,1},{3,1}}]]
In[]:=
Out[]=
HypergraphPlot/@WolframModel[{{1,2},{2,3}}{{2,1},{3,1}},Table[{i,i+1},{i,10}],20,"StatesList"]
In[]:=
Out[]=
Graph[CanonicalGraph[Graph[Rule@@@#]],ImageSize80]&/@WolframModel[{{1,2},{2,3}}{{2,1},{3,1}},Table[{i,i+1},{i,5}],10,"StatesList"]
In[]:=
Out[]=
Graph[CanonicalGraph[Graph[Rule@@@#]],ImageSize80,GraphLayout"SpringElectricalEmbedding"]&/@WolframModel[{{1,2},{2,3}}{{2,1},{3,1}},Table[{i,i+1},{i,5}],10,"StatesList"]
In[]:=
Out[]=
CanonicalGraph[Graph[Rule@@@#]]&/@WolframModel[{{1,2},{2,3}}{{2,1},{3,1}},Table[{i,i+1},{i,5}],10,"StatesList"]
HypergraphPlot/@WolframModel[{{1,2},{2,3}}{{2,1},{3,1}},Table[{i,i+1},{i,5}],10,"StatesList"]
In[]:=
Out[]=
RulePlot[WolframModel[{{1,2},{2,3}}{{1,3},{2,3}}]]
In[]:=
Out[]=
WolframModel[{{1,2},{2,3}}{{1,3},{2,3}},Table[{i,Mod[i+1,21]},{i,0,20}],30,"LayeredCausalGraph"]
In[]:=
Out[]=
InteractiveListSelectorSW[ParallelMapMonitored[WolframModel[#,Table[{i,Mod[i+1,21]},{i,0,20}],30,"LayeredCausalGraph"]#&,allrules]]
In[]:=
Out[]=
{{{1,2},{2,3}}{{1,1},{1,3}},{{1,2},{2,3}}{{1,1},{1,3}},{{1,2},{2,3}}{{1,1},{3,1}},{{1,2},{2,3}}{{1,2},{2,3}},{{1,2},{2,3}}{{2,1},{3,1}},{{1,2},{2,3}}{{3,1},{1,2}},{{1,2},{2,3}}{{1,4},{4,3}},{{1,2},{2,3}}{{3,4},{4,1}},{{1,2},{2,3}}{{3,1},{3,2}},{{1,2},{2,3}}{{2,1},{3,1}},{{1,2},{2,3}}{{1,2},{1,3}},{{1,2},{2,3}}{{3,1},{1,2}},{{1,2},{2,3}}{{2,3},{3,1}}}
InteractiveListSelectorSW[ParallelMapMonitored[WolframModel[#,Table[{i,Mod[i+1,21]},{i,0,20}],50,"LayeredCausalGraph"]#&,{{{1,2},{2,3}}{{1,1},{1,3}},{{1,2},{2,3}}{{1,1},{1,3}},{{1,2},{2,3}}{{1,1},{3,1}},{{1,2},{2,3}}{{1,2},{2,3}},{{1,2},{2,3}}{{2,1},{3,1}},{{1,2},{2,3}}{{3,1},{1,2}},{{1,2},{2,3}}{{1,4},{4,3}},{{1,2},{2,3}}{{3,4},{4,1}},{{1,2},{2,3}}{{3,1},{3,2}},{{1,2},{2,3}}{{2,1},{3,1}},{{1,2},{2,3}}{{1,2},{1,3}},{{1,2},{2,3}}{{3,1},{1,2}},{{1,2},{2,3}}{{2,3},{3,1}}}]]
In[]:=
Out[]=
Table[{i,Mod[i+1,21]},{i,0,20}]
In[]:=
{{0,1},{1,2},{2,3},{3,4},{4,5},{5,6},{6,7},{7,8},{8,9},{9,10},{10,11},{11,12},{12,13},{13,14},{14,15},{15,16},{16,17},{17,18},{18,19},{19,20},{20,0}}
Out[]=
InteractiveListSelectorSW[ParallelMapMonitored[FinalPicture2[#,Table[{i,Mod[i+1,21]},{i,0,20}],30]#&,{{{1,2},{2,3}}{{1,1},{1,3}},{{1,2},{2,3}}{{1,1},{1,3}},{{1,2},{2,3}}{{1,1},{3,1}},{{1,2},{2,3}}{{1,2},{2,3}},{{1,2},{2,3}}{{2,1},{3,1}},{{1,2},{2,3}}{{3,1},{1,2}},{{1,2},{2,3}}{{1,4},{4,3}},{{1,2},{2,3}}{{3,4},{4,1}},{{1,2},{2,3}}{{3,1},{3,2}},{{1,2},{2,3}}{{2,1},{3,1}},{{1,2},{2,3}}{{1,2},{1,3}},{{1,2},{2,3}}{{3,1},{1,2}},{{1,2},{2,3}}{{2,3},{3,1}}}]]
In[]:=
Out[]=
InteractiveListSelectorSW[Map[EvolutionPicture2[#,Table[{i,Mod[i+1,21]},{i,0,20}],30]#&,{{{1,2},{2,3}}{{2,1},{3,1}},{{1,2},{2,3}}{{2,1},{3,1}},{{1,2},{2,3}}{{3,1},{3,2}}}]]
In[]:=
Out[]=
RulePlot[WolframModel[{{1,2},{2,3}}{{2,1},{3,1}}]]
In[]:=
Out[]=
Graph[Rule@@@#]&/@WolframModel[{{1,2},{2,3}}{{1,4},{4,3}},Table[{i,i+1},{i,5}],10,"StatesList"]
In[]:=
Out[]=
{{1,2},{2,3}}{{1,4},{4,3}}
all52=EnumerateHypergraphs[{{5,2}}];
In[]:=
res52x=ParallelMapMonitored[#->FindCanonicalHypergraph[Last[WolframModel[{{1,2},{2,3}}{{1,4},{4,3}},#,1,"StatesList"]]]&,all52];
In[]:=
Graph[res52x,EdgeStyleDarker[Green,.6],VertexStyle->Lighter[Blue,0.9]]
In[]:=
Out[]=
Counts[ConnectedHypergraphQ/@all52]
In[]:=
True928
Out[]=
Last/@res52x
In[]:=
Out[]=
Counts[ConnectedHypergraphQ/@%]
In[]:=
True732,False196
Out[]=
Counts[ConnectedHypergraphQ/@(Last/@res52)]
In[]:=
True928
Out[]=