In[]:=
With[{gg=NestGraph[n{2n+I,In+1},0,5,VertexLabels"Name"]},Graph[gg,VertexCoordinatesThread[VertexList[gg](ReIm/@VertexList[gg])]]]
Out[]=
In[]:=
ComplexMultiway[{{a_,b_},{c_,d_}},init_:0,t_Integer,opts___]:=With[{g=NestGraph[n{an+b,cn+d},{init},t]},Graph[g,opts,VertexCoordinates(#->ReIm[#]&/@VertexList[g])]]
In[]:=
ComplexMultiway0[{{a_,b_},{c_,d_}},init_:0,t_Integer,opts___]:=With[{g=NestGraph[n{an+b,cn+d},{init},t]},Graph[g,opts]]
In[]:=
ComplexMultiway[{{.8,.5I},{.8,-.5I}},1,6]
Out[]=
1+z
In[]:=
ComplexListPlot[ResourceFunction["NestedBranching"][{0.7+0.2I,0.7-0.2I},7,"Output""EndPoints"],PlotStylePointSize[.05]]
Out[]=
{-1,1,I,-I,1+I,1-I}
In[]:=
Outer[Labeled[ComplexMultiway[{{#1,#2},{#3,#4}},0,4],{{#1,#2},{#3,#4}}]&,{-1,1,I,-I,1+I,1-I},{-1,1,I,-I,1+I,1-I},{-1,1,I,-I,1+I,1-I},{-1,1,I,-I,1+I,1-I},1]
Out[]=