GraphUnion[IndexGraph[GridGraph[{30,50}]],IndexGraph[GridGraph[{10,10,10}]]]
In[]:=
Out[]=
$Version
In[]:=
12.1.1 for Mac OS X x86 (64-bit) (July 8, 2020)
Out[]=
GridGraph[{30,50}]
GraphUnion[IndexGraph[GridGraph[{20,20}]],IndexGraph@GridGraph[{10,10,10}]]
In[]:=
Out[]=
Graph3D[%]
In[]:=
Out[]=
g2d=IndexGraph[GridGraph[{30,50}]];g3d=IndexGraph[GridGraph[{10,10,10}]];
In[]:=
Graph[Complement[EdgeList[g3d],EdgeList[g2d]]]
In[]:=
Out[]=
With[{u=RandomInteger[1,100]},SeedRandom[24245];ArrayPlot[Sum[(2+(-1)^i)CellularAutomaton[30,ReplacePart[u,50i],50],{i,0,1}],ColorRules{0White,4Black,1Red,3Red},ImageSize150]]
In[]:=
Out[]=
ResourceFunction["WolframModel"][{{{x,y},{x,z}}{{x,z},{x,w},{y,w},{z,w}}},{{0,0},{0,0}},7]["LayeredCausalGraph",AspectRatio0.7]
In[]:=
Out[]=
mixedGrid[sizes2D_,sizes3D_]:=Module[{grid2D=IndexGraph[GridGraph[sizes2D]],grid3D=IndexGraph[GridGraph[sizes3D]],trimmedEdges2D},trimmedEdges2D=Select[AnyTrue[#,!MemberQ[VertexList[grid3D],#]&]&]@EdgeList[grid2D];Graph[Join[EdgeList[grid3D],trimmedEdges2D]]]
In[]:=
mixedGrid[{40,40},{10,10,10}]
In[]:=
Out[]=
Einstein-Straus model : uniform density ; with concentration inside particular spheres....