WOLFRAM NOTEBOOK

In[]:=
CyclicGroup[10]
Out[]=
CyclicGroup[10]
In[]:=
GroupMultiplicationTable[CyclicGroup[10]]
Out[]=
In[]:=
MatrixPlot[%]
Out[]=
In[]:=
GroupElements[CyclicGroup[8]]
Out[]=
In[]:=
GroupGenerators[CyclicGroup[8]]
Out[]=
{Cycles[{{1,2,3,4,5,6,7,8}}]}
In[]:=
CayleyGraph[CyclicGroup[8]]
Out[]=
In[]:=
PermutationList[#,8]&/@GroupElements[CyclicGroup[8]]
Out[]=
{{1,2,3,4,5,6,7,8},{2,3,4,5,6,7,8,1},{3,4,5,6,7,8,1,2},{4,5,6,7,8,1,2,3},{5,6,7,8,1,2,3,4},{6,7,8,1,2,3,4,5},{7,8,1,2,3,4,5,6},{8,1,2,3,4,5,6,7}}
In[]:=
PermutationList[#,12]&/@GroupElements[CyclicGroup[8]]
Out[]=
CyclicGroup[3]
{{1,2,3},{1,3,2},{2,1,3},{2,3,1}}
In[]:=
FiniteGroupData[3]
Out[]=
{{CyclicGroup,3}}
In[]:=
FiniteGroupData[4]
Out[]=
{{CyclicGroup,4},{AbelianGroup,{2,2}}}
In[]:=
FiniteGroupData[5]
Out[]=
{{CyclicGroup,5}}
In[]:=
FiniteGroupData[6]
Out[]=
{{AbelianGroup,{3,2}},{SymmetricGroup,3}}
In[]:=
FiniteGroupData[7]
Out[]=
{{CyclicGroup,7}}
In[]:=
FiniteGroupData[8]
Out[]=
{{CyclicGroup,8},{AbelianGroup,{4,2}},{AbelianGroup,{2,2,2}},{DihedralGroup,4},Quaternion}
In[]:=
FiniteGroupData[12]
Out[]=
{{AbelianGroup,{4,3}},{AbelianGroup,{3,2,2}},{AlternatingGroup,4},{DihedralGroup,6},{DicyclicGroup,3}}
In[]:=
PermutationList[#,12]&/@GroupElements[AlternatingGroup[4]]
Out[]=
In[]:=
PermutationList[#,4]&/@GroupElements[AlternatingGroup[4]]
Out[]=
{{1,2,3,4},{1,3,4,2},{1,4,2,3},{2,1,4,3},{2,3,1,4},{2,4,3,1},{3,1,2,4},{3,2,4,1},{3,4,1,2},{4,1,3,2},{4,2,1,3},{4,3,2,1}}

Forming a group

In[]:=
GroupElements[PermutationGroup[{{1,2,3},{1,3,2},{2,1,3},{2,3,1}}]]
Out[]=
{Cycles[{}],Cycles[{{2,3}}],Cycles[{{1,2}}],Cycles[{{1,2,3}}],Cycles[{{1,3,2}}],Cycles[{{1,3}}]}
In[]:=
PermutationList[#,3]&/@%
Out[]=
{{1,2,3},{1,3,2},{2,1,3},{2,3,1},{3,1,2},{3,2,1}}
This is symmetric group on 3 elements....

Rank is minimum number of generators

In[]:=
GroupGenerators[SymmetricGroup[7]]
Out[]=
{Cycles[{{1,2}}],Cycles[{{1,2,3,4,5,6,7}}]}
In[]:=
GroupElementQ[PermutationGroup[{{2,3,1}}],{3,1,2}]
Out[]=
True
In[]:=
GroupElementQ[PermutationGroup[{{2,3,1}}],{2,1,3}]
Out[]=
False

Random permutations

Representations of groups

Permutation representation of a group vs. matrix representation vs. generators & relations

Matrix representations

E.g. SO(3) :

Permutation representations

The thing generated by:

Cyclic Case

Imagine that we took Lie group space and made a lattice out of it...

Then simply for permutations of elements to elements
Any given rotation at least approximately maps these points to other points....
Pick a random rotation matrix....

Can we do GroupOrbits??

What is the closest permutation
What should the norm of closest permutation be??
Wolfram Cloud

You are using a browser not supported by the Wolfram Cloud

Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.


I understand and wish to continue anyway »

You are using a browser not supported by the Wolfram Cloud. Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.