WOLFRAM NOTEBOOK

NOTE: the 24-step data is for a different rule!!!!

Data Generation [24RuleCausalGraph-01.nb]

Data Use

In[]:=
In[]:=
ListLinePlot[LogDifferences/@vols]
Out[]=
In[]:=
ListLinePlot[LogDifferences/@Take[vols,15]]
Out[]=
In[]:=
vols[[16]]
Out[]=

Ragged vs. Non-Ragged

In[]:=
ListLinePlot[Select[Length[#]>3&][HypergraphDimensionEstimateList/@Drop[WolframModel[{{x,y},{x,z}}{{x,z},{x,w},{y,w},{z,w}},{{1,2},{1,3}},15,"StatesList"],4]],FrameTrue]
Out[]=
In[]:=
ListLinePlot[Select[Length[#]>3&][HypergraphDimensionEstimateList/@Drop[WolframModel[{{x,y},{x,z}}{{x,z},{x,w},{y,w},{z,w}},{{0,0},{0,0}},15,"StatesList"],4]],FrameTrue]
Out[]=
In[]:=
HypergraphDimensionEstimateList[hg_]:=ResourceFunction["LogDifferences"][MeanAround/@Transpose[Values[HypergraphNeighborhoodVolumes[hg,All,Automatic]]]]

Ragged vs. non

In[]:=
Values[HypergraphNeighborhoodVolumes[wmeo[15]]]
Out[]=
$Aborted
In[]:=
w15=WolframModel[{{x,y},{x,z}}{{x,z},{x,w},{y,w},{z,w}},{{0,0},{0,0}},15,"FinalState"];
In[]:=
nonrag=MeanAround/@Transpose[Values[HypergraphNeighborhoodVolumes[w15,All,Automatic]]]
Out[]=
In[]:=
rag=RaggedMeanAround[Values[HypergraphNeighborhoodVolumes[w15]]]
Out[]=
In[]:=
ListLinePlot[LogDifferences/@{nonrag,rag}]
Out[]=
In[]:=
ListLinePlot[LogDifferences/@{rag,nonrag}]
Out[]=
Wolfram Cloud

You are using a browser not supported by the Wolfram Cloud

Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.


I understand and wish to continue anyway »

You are using a browser not supported by the Wolfram Cloud. Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.