WOLFRAM NOTEBOOK

In[]:=
e22=EnumerateHypergraphs[{{2,2}}]
Out[]=
{{{1,1},{1,1}},{{1,1},{1,2}},{{1,1},{2,1}},{{1,2},{1,2}},{{1,2},{2,1}},{{1,2},{1,3}},{{1,2},{2,3}},{{1,2},{3,2}}}
In[]:=
Outer[HypergraphUnifications,e22,e22,1]
Out[]=
In[]:=
HypergraphUnifications[#,#]&/@e22
Out[]=
In[]:=
WolframModelPlot[#,EdgeStyleReplacePart[Table[Automatic,Length[#]],Join[Thread[Intersection[Values[#2],Values[#3]]Purple],Thread[Values[#2]Red],Thread[Values[#3]Blue]]]]&@@@HypergraphUnifications[{{1,2},{2,3}},{{1,2},{2,3}}]
Out[]=
In[]:=
HypergraphUnificationPlot[h1_,h2_]:=WolframModelPlot[#,EdgeStyleReplacePart[Table[Automatic,Length[#]],Join[Thread[Intersection[Values[#2],Values[#3]]Purple],Thread[Values[#2]Red],Thread[Values[#3]Blue]]]]&@@@HypergraphUnifications[h1,h2]
In[]:=
HypergraphUnificationPlot[h1_]:=WolframModelPlot[#,EdgeStyleReplacePart[Table[Automatic,Length[#]],Join[Thread[Intersection[Values[#2],Values[#3]]Purple],Thread[Values[#2]Red],Thread[Values[#3]Blue]]]]&@@@h1
In[]:=
HypergraphUnificationPlot[#,#]&[{{1,2},{2,1}}]
Out[]=
In[]:=
Function[h,Select[HypergraphUnifications[h,h],Length[First[#]]Length[h]&]]/@e22
Out[]=
In[]:=
Transpose[{WolframModelPlot/@e22,HypergraphUnificationPlot/@%292}]
Out[]=
Combined rules
It is the Wolfram model multiway system
“Cumulative rule” is an unification of branches in multiway system
Wolfram Cloud

You are using a browser not supported by the Wolfram Cloud

Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.


I understand and wish to continue anyway »

You are using a browser not supported by the Wolfram Cloud. Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.