Physics in d dimensions
Physics in d dimensions
[Basic Math]
[Basic Math]
Hyperspheres
Hyperspheres
Volume:
Out[]=
d/2
π
d
r
d
2
Out[]=
2r,π,,
2
r
4π
3
r
3
2
π
4
r
2
Surface area:
Out[]=
d
d/2
π
-1+d
r
d
2
Differential forms
Differential forms
Wedge products (AKA curl etc.)
TensorWedge[]
HodgeDual[]
Chain complexes etc.
Chain complexes etc.
0 smooth functions d ( functions ) [1-form] d d ( functions ) [2-forms] .... [ends in integer dimensions]
In[]:=
scalar=With[{d=3},Sum[x[i]^x[j],{i,d},{j,d}]]
Out[]=
x[1]
x[1]
x[2]
x[1]
x[3]
x[1]
x[1]
x[2]
x[2]
x[2]
x[3]
x[2]
x[1]
x[3]
x[2]
x[3]
x[3]
x[3]
In[]:=
With[{d=3},Grad[scalar,Array[x,d]]]
Out[]=
(1+Log[x[1]])+x[2]+Log[x[2]]+x[3]+Log[x[3]],Log[x[1]]+x[1]+(1+Log[x[2]])+x[3]+Log[x[3]],Log[x[1]]+Log[x[2]]+x[1]+x[2]+(1+Log[x[3]])
x[1]
x[1]
-1+x[2]
x[1]
x[1]
x[2]
-1+x[3]
x[1]
x[1]
x[3]
x[2]
x[1]
-1+x[1]
x[2]
x[2]
x[2]
-1+x[3]
x[2]
x[2]
x[3]
x[3]
x[1]
x[3]
x[2]
-1+x[1]
x[3]
-1+x[2]
x[3]
x[3]
x[3]
ExteriorD[pform_,coords_]:=
In[]:=
With[{d=3},SymbolicTensors`ExteriorD[Grad[scalar,Array[x,d]],Array[x,d]]]
Out[]=
SymmetrizedArray
In[]:=
Normal[%]
Out[]=
0,0,+Log[x[1]]x[3]++Log[x[3]]x[1],0,0,+Log[x[2]]x[3]++Log[x[3]]x[2],--Log[x[1]]x[3]--Log[x[3]]x[1],--Log[x[2]]x[3]--Log[x[3]]x[2],0
-1+x[3]
x[1]
-1+x[3]
x[1]
-1+x[1]
x[3]
-1+x[1]
x[3]
-1+x[3]
x[2]
-1+x[3]
x[2]
-1+x[2]
x[3]
-1+x[2]
x[3]
-1+x[3]
x[1]
-1+x[3]
x[1]
-1+x[1]
x[3]
-1+x[1]
x[3]
-1+x[3]
x[2]
-1+x[3]
x[2]
-1+x[2]
x[3]
-1+x[2]
x[3]
In[]:=
With[{d=3},NestList[SymbolicTensors`ExteriorD[#,Array[x,d]]&,f@@Array[x,d],4]]
Out[]=
f[x[1],x[2],x[3]],SymbolicTensors`Tensor[x[1],x[2],x[3]],[x[1],x[2],x[3]],[x[1],x[2],x[3]],{SymbolicTensors`CotangentBasis[{x[1],x[2],x[3]}]},SymbolicTensors`TensorSymmetrizedArray,{SymbolicTensors`CotangentBasis[{x[1],x[2],x[3]}],SymbolicTensors`CotangentBasis[{x[1],x[2],x[3]}]},SymbolicTensors`TensorSymmetrizedArray,{SymbolicTensors`CotangentBasis[{x[1],x[2],x[3]}],SymbolicTensors`CotangentBasis[{x[1],x[2],x[3]}],SymbolicTensors`CotangentBasis[{x[1],x[2],x[3]}]},SymbolicTensors`TensorSymmetrizedArray,{SymbolicTensors`CotangentBasis[{x[1],x[2],x[3]}],SymbolicTensors`CotangentBasis[{x[1],x[2],x[3]}],SymbolicTensors`CotangentBasis[{x[1],x[2],x[3]}],SymbolicTensors`CotangentBasis[{x[1],x[2],x[3]}]}
(1,0,0)
f
(0,1,0)
f
(0,0,1)
f
In[]:=
NormalSymmetrizedArray
Out[]=
{{{{0,0,0},{0,0,0},{0,0,0}},{{0,0,0},{0,0,0},{0,0,0}},{{0,0,0},{0,0,0},{0,0,0}}},{{{0,0,0},{0,0,0},{0,0,0}},{{0,0,0},{0,0,0},{0,0,0}},{{0,0,0},{0,0,0},{0,0,0}}},{{{0,0,0},{0,0,0},{0,0,0}},{{0,0,0},{0,0,0},{0,0,0}},{{0,0,0},{0,0,0},{0,0,0}}}}
Imagine our original function is painted as a scalar on a hypergraph [every node is given a value]
After one derivative, we see every individual edge painted with the difference between the values at two ends of the edge.
General chain complex
General chain complex
The homomorphisms going to successive stages in the chain complex satisfy d[i+1] · d[i] = 0
But the i’s don’t have to be integers
But the i’s don’t have to be integers
Construction of p forms
Construction of p forms
[Have to have somewhat long geodesics to have a clear notion of orthogonality]
To make a p+1 form from a p form we are basically taking finite differences in all possible ways (following the hypergraph) relative to the numbers in the p form
In[]:=
Graph[GridGraph[{6,6}],VertexWeightTable[iRandomReal[],{i,36}],VertexLabels"VertexWeight"]
Out[]=
In[]:=
ggg=Graph[Rule@@@ResourceFunction["WolframModel"][{{x,y},{x,z}}{{x,z},{x,w},{y,w},{z,w}},{{1,2},{1,3}},8,"FinalState"]]
Out[]=
In[]:=
HighlightGraph[ggg,NeighborhoodGraph[ggg,5,2]]
Out[]=
In[]:=
inside=VertexList[NeighborhoodGraph[ggg,5,2]];
In[]:=
outside=Complement[VertexList[ggg],inside];
In[]:=
Flatten[Outer[Last[Select[FindShortestPath[ggg,#1,#2],MemberQ[inside,#]&],Nothing]&,inside,outside]]
Out[]=
{15,28,30,30,15,15,15,39,28,42,42,46,38,30,30,52,52,15,15,15,15,39,42,42,38,42,42,46,28,28,28,30,30,28,46,30,30,52,52,52,52,22,30,30,30,30,30,30,15,15,15,15,42,15,38,39}
[ Generalized Jordan curve to prove that there is a boundary .... although it’s not a connected graph ]
Boundary of boundary:
This was an example of boundary of a boundary = 0.
We can do a generalization of this by looking at which is reached from each node from pairs of edges, not just single edges.
Instead of asking about a single geodesic coming from the outside into the inside region, asking about p geodesics doing this, and then record all p-tuples of points where these geodesics first intersect the inside region.
Instead of asking about a single geodesic coming from the outside into the inside region, asking about p geodesics doing this, and then record all p-tuples of points where these geodesics first intersect the inside region.
(Helmholtz decomposition theorem) Decompose any vector field into a divergence free and curl free part.
[ Making a p form from a collection of p edges without knowing which edge is which naturally leads to an antisymmetric object ]
In the case of a grid, we label the coordinates by real numbers
In the case of a tree, we can natural;y use p-adic numbers
Are spinors like directed edges ; vectors like undirected edges ??
Are spinors like directed edges ; vectors like undirected edges ??
Graph cohomology?
Graph cohomology?
Directed edge needs to be doubled to make an undirected edge....
Classical Mechanics
Classical Mechanics
Electrodynamics
Electrodynamics
Maxwell’s equations
Maxwell’s equations
Inverse square law
Inverse square law
1/(area of d-dimensional sphere)
Thermodynamics
Thermodynamics
Gravitation
Gravitation
Black holes
Black holes
Quantum Effects
Quantum Effects
Quantum Field Theory
Quantum Field Theory
[ Renormalization seems to be very 4 dimensional ]
[ Dimensional regularization ]
[ Dimensional regularization ]
Materials
Materials
Crystallography
Crystallography
[ Hard to do in d dimensions]
Units
Units
Some don’t depend on dimension; others, like G, do.