[[ https://community.wolfram.com/groups/-/m/t/1729148 ]]

RulePlot[WolframModel[encodeCARule[110,0]]]
In[]:=
Out[]=
RulePlot[WolframModel[#]]&/@encodeCARule[110,0]
In[]:=
Out[]=
WolframModelPlot[encodeCAState[{1}]]
In[]:=
Out[]=
WolframModelPlot[encodeCAState[{1,1}]]
In[]:=
Out[]=
WolframModelPlot[encodeCAState[{1,0,1}]]
In[]:=
Out[]=
WolframModelPlot[encodeCAState[{1,1,0}]]
In[]:=
Out[]=
WolframModelPlot[encodeCAState[{0}]]
In[]:=
Out[]=
WolframModel[encodeCARule[110,0],encodeCAState[{1}],4]
In[]:=
Out[]=

Turing machine

RulePlot[WolframModel[encodeTMRule[{596440,2,3},0]]]
In[]:=
Out[]=
RulePlot[WolframModel[encodeTMRule[{2506,2,2},0]]]
In[]:=
RulePlot
:The rule specification encodeTMRule[{2506,2,2},0] should be either a Rule, a List of rules, or <|PatternRules -> rules|>, where rules is either a Rule, RuleDelayed, or a List of them.
RulePlot[WolframModel[encodeTMRule[{2506,2,2},0]]]
Out[]=
TuringMachine[
MultiwaySystem[WolframModel[encodeTMRule[{596440,2,3},0]],encodeTMState[{1,1},{0}],5,"StatesGraphStructure"]
In[]:=
Out[]=
MultiwaySystem[WolframModel[encodeTMRule[{596440,2,3},0]],encodeTMState[{1,1},{0}],8,"StatesGraphStructure"]
In[]:=
Out[]=

CA-like picture

WolframModel[{{x,y},{x,z}}{{x,z},{x,w},{y,w},{z,w}},{{0,0},{0,0}},4,"StatesList"]
In[]:=
Out[]=

< Look for slow growth rules.... >

WolframModel[{{x,y},{x,z}}{{x,z},{x,w},{y,w},{z,w}},{{0,0},{0,0}},4,"AllEventsList"]
In[]:=
Out[]=
#[[2,1,1]]&/@WolframModel[{{x,y},{x,z}}{{x,z},{x,w},{y,w},{z,w}},{{0,0},{0,0}},10,"AllEventsList"]
In[]:=
Out[]=
ListLinePlot[Differences[%]]
In[]:=
Out[]=
ListLinePlot[Differences[#[[2,1,2]]&/@WolframModel[{{x,y},{x,z}}{{x,z},{x,w},{y,w},{z,w}},{{0,0},{0,0}},10,"AllEventsList"]]]
In[]:=
Out[]=
How far did it need to go to find an edge....