allrules12=EnumerateWolframModelRules[{{1,2}}{{2,2}}];
In[]:=
lens=ParallelMapMonitored[(Length[WeaklyConnectedComponents[Graph[Rule@@@#]]]&/@WolframModel[#,{{0,0}},8,"StatesList"])&,allrules12];
In[]:=
Take[lens,3]
In[]:=
{{1,1,1,1,1,1,1,1,1},{1,1,1,1,1,1,1,1,1},{1,1,1,1,1,1,1,1,1}}
Out[]=
Select[allrules12,!ConnectedHypergraphQ[WolframModel[#,{{0,0}},4,"FinalState"]]&]
In[]:=
Out[]=
InteractiveListSelectorSW[ParallelMapMonitored[MultiwaySystem[WolframModel[#],{{0,0}},4,"StatesGraphStructure"]#&,%]]
In[]:=
Out[]=
InteractiveListSelectorSW[ParallelMapMonitored[MultiwaySystem[WolframModel[#],{{0,0}},5,"StatesGraphStructure"]#&,%408]]
In[]:=
Out[]=
LayeredGraphPlot[MultiwaySystem[WolframModel[{{1,2}}{{3,3},{2,3}}],{{0,0}},6,"StatesGraphStructure"],AspectRatio1/2]
In[]:=
Out[]=
InteractiveListSelectorSW[ParallelMapMonitored[TimeConstrained[MultiwaySystem[WolframModel[#],{{0,0}},7,"StatesGraphStructure"],5]#&,%408]]
In[]:=
Out[]=
InteractiveListSelectorSW[ParallelMapMonitored[TimeConstrained[MultiwaySystem[WolframModel[#],{{0,0}},6,"StatesGraphStructure"],5]#&,%408]]
In[]:=
Out[]=
1,2 -> 3,2
1,2 -> 3,2
allrules13=EnumerateWolframModelRules[{{1,2}}{{3,2}}];
In[]:=
d13=Select[allrules13,!ConnectedHypergraphQ[WolframModel[#,{{0,0}},4,"FinalState"]]&];
In[]:=
Length[d13]
In[]:=
242
Out[]=
InteractiveListSelectorSW[First/@GatherBy[ParallelMapMonitored[TimeConstrained[MultiwaySystem[WolframModel[#],{{0,0}},4,"StatesGraphStructure"],5]#&,d13],First]]
In[]:=
Out[]=
all23=Import["/Users/sw/Dropbox/Physics/Data/RuleEnumerations/22-32c.wxf"];
In[]:=
Length[all23]
In[]:=
4702
Out[]=
crit23=ParallelMapMonitored[ConnectedHypergraphQ[WolframModel[#,{{0,0},{0,0}},4,"FinalState"]]&,all23];
In[]:=
d23=Pick[all23,crit23,False];
In[]:=
Length[d23]
In[]:=
1490
Out[]=
InteractiveListSelectorSW[First/@GatherBy[ParallelMapMonitored[TimeConstrained[MultiwaySystem[WolframModel[#],{{0,0},{0,0}},4,"StatesGraphStructure"],5]#&,d23],First]]
In[]:=
Out[]=
InteractiveListSelectorSW[RulePlot[WolframModel[#]]#&/@{{{1,1},{1,2}}{{2,2},{2,2},{1,3}},{{1,1},{1,2}}{{2,2},{2,3},{3,3}},{{1,1},{1,2}}{{2,2},{2,3},{3,4}},{{1,2},{2,3}}{{1,1},{1,2},{4,2}},{{1,2},{1,3}}{{1,1},{2,4},{4,5}},{{1,2},{1,3}}{{2,2},{3,4},{3,5}},{{1,2},{2,3}}{{2,2},{4,5},{5,1}},{{1,2},{1,3}}{{1,4},{4,1},{2,5}},{{1,2},{2,3}}{{4,5},{5,1},{1,2}},{{1,2},{3,2}}{{2,2},{1,4},{4,3}}}]
In[]:=
Out[]=
InteractiveListSelectorSW[ParallelMapMonitored[Labeled[TimeConstrained[MultiwaySystem[WolframModel[#],{{0,0},{0,0}},5,"StatesGraphStructure"],5],RulePlot[WolframModel[#]]]#&,{{{1,1},{1,2}}{{2,2},{2,2},{1,3}},{{1,1},{1,2}}{{2,2},{2,3},{3,3}},{{1,1},{1,2}}{{2,2},{2,3},{3,4}},{{1,2},{2,3}}{{1,1},{1,2},{4,2}},{{1,2},{1,3}}{{1,1},{2,4},{4,5}},{{1,2},{1,3}}{{2,2},{3,4},{3,5}},{{1,2},{2,3}}{{2,2},{4,5},{5,1}},{{1,2},{1,3}}{{1,4},{4,1},{2,5}},{{1,2},{2,3}}{{4,5},{5,1},{1,2}},{{1,2},{3,2}}{{2,2},{1,4},{4,3}}}]]
In[]:=
Out[]=
WolframModel[#,{{0,0},{0,0}},9,"CausalGraph"]&/@{{{1,1},{1,2}}{{2,2},{2,2},{1,3}},{{1,1},{1,2}}{{2,2},{2,3},{3,3}},{{1,1},{1,2}}{{2,2},{2,3},{3,4}},{{1,2},{2,3}}{{1,1},{1,2},{4,2}},{{1,2},{1,3}}{{1,1},{2,4},{4,5}},{{1,2},{1,3}}{{2,2},{3,4},{3,5}},{{1,2},{2,3}}{{2,2},{4,5},{5,1}},{{1,2},{1,3}}{{1,4},{4,1},{2,5}},{{1,2},{2,3}}{{4,5},{5,1},{1,2}},{{1,2},{3,2}}{{2,2},{1,4},{4,3}}}
In[]:=
Out[]=
ParallelMapMonitored[TimeConstrained[MultiwaySystem[WolframModel[#],{{0,0},{0,0}},5,"StatesGraphStructure"],7]#&,{{{1,1},{1,2}}{{2,2},{2,3},{3,3}},{{1,1},{1,2}}{{2,2},{2,3},{3,4}},{{1,2},{2,3}}{{1,1},{1,2},{4,2}},{{1,2},{2,3}}{{4,5},{5,1},{1,2}}}]
In[]:=
Out[]=
{{{1,1},{1,2}}{{2,2},{2,3},{3,3}},{{1,1},{1,2}}{{2,2},{2,3},{3,4}},{{1,2},{2,3}}{{1,1},{1,2},{4,2}},{{1,2},{2,3}}{{4,5},{5,1},{1,2}}}
MultiwaySystem[WolframModel[{{1,1},{1,2}}{{2,2},{2,3},{3,3}}],{{0,0},{0,0}},6,"StatesGraph"]
In[]:=
Out[]=
MultiwaySystem[WolframModel[{{1,1},{1,2}}{{2,2},{2,3},{3,3}}],{{0,0},{0,0}},7,"StatesGraph"]
In[]:=
Out[]=
MultiwaySystem[WolframModel[{{1,2},{2,3}}{{4,5},{5,1},{1,2}}],{{0,0},{0,0}},6,"StatesGraph"]
In[]:=
Out[]=
WolframModel[{{1,2},{2,3}}{{4,5},{5,1},{1,2}},{{0,0},{0,0}},5,"StatesPlotsList"]
In[]:=
Out[]=
WolframModel[{{1,2},{1,3}}{{1,4},{4,1},{2,5}},{{0,0},{0,0}},5,"StatesPlotsList"]
In[]:=
Out[]=
MultiwaySystem[WolframModel[{{1,2},{1,3}}{{1,4},{4,1},{2,5}}],{{0,0},{0,0}},5,"StatesGraph",VertexSize1]//LayeredGraphPlot
In[]:=
Out[]=
WolframModel[{{1,2},{1,3}}{{1,1},{2,4},{4,5}},{{0,0},{0,0}},5,"StatesPlotsList"]
In[]:=
Out[]=
MultiwaySystem[WolframModel[{{1,2},{1,3}}{{1,1},{2,4},{4,5}}],{{0,0},{0,0}},5,"StatesGraph",VertexSize1]//LayeredGraphPlot
In[]:=
Out[]=
MultiwaySystem[WolframModel[{{1,2},{1,3}}{{1,1},{2,4},{4,5}}],{{0,0},{0,0}},7,"CausalGraphStructure"]//LayeredGraphPlot
In[]:=
Out[]=
MultiwaySystem[WolframModel[{{1,2},{2,3}}{{4,5},{5,1},{1,2}}],{{0,0},{0,0}},6,"CausalGraphStructure"]//LayeredGraphPlot
In[]:=
Out[]=
XYifyRule[{{1,2},{1,3}}{{1,1},{2,4},{4,5}}]
In[]:=
{{x,y},{x,z}}{{x,x},{y,u},{u,v}}
Out[]=
WolframModel[{{1,2},{1,3}}{{1,1},{2,4},{4,5}},{{0,0},{0,0}},6,"CausalGraph"]
In[]:=
Out[]=
WolframModel[{{1,2},{2,3}}{{4,5},{5,1},{1,2}},{{0,0},{0,0}},6,"CausalGraph"]
In[]:=
Out[]=
XYifyRule[{{1,2},{2,3}}{{4,5},{5,1},{1,2}}]
In[]:=
{{x,y},{y,z}}{{u,v},{v,x},{x,y}}
Out[]=
MultiwaySystem[WolframModel[{{{x,x},{x,y}}{{y,y},{y,y},{x,z}}}],{{0,0},{0,0}},6,"StatesGraphStructure"]
In[]:=
Out[]=
MultiwaySystem[WolframModel[{{{x,x},{x,y}}{{y,y},{y,y},{x,z}}}],{{0,0},{0,0}},7,"StatesGraphStructure"]
In[]:=
Out[]=
LayeredGraphPlot[%,AspectRatio1/2]
In[]:=
Out[]=
MultiwaySystem[WolframModel[{{1,2},{2,3}}{{1,1},{1,2},{4,2}}],{{0,0},{0,0}},5,"StatesGraphStructure"]
In[]:=
Out[]=
MultiwaySystem[WolframModel[{{1,2},{2,3}}{{1,1},{1,2},{4,2}}],{{0,0},{0,0}},6,"StatesGraphStructure"]
In[]:=
Out[]=
MultiwaySystem[WolframModel[{{1,2},{2,3}}{{1,1},{1,2},{4,2}}],{{0,0},{0,0}},6,"StatesGraphStructure"]//LayeredGraphPlot
In[]:=
Out[]=
LayeredGraphPlot[MultiwaySystem[WolframModel[{{1,2},{2,3}}{{1,1},{1,2},{4,2}}],{{0,0},{0,0}},7,"StatesGraphStructure"],AspectRatio1/2]
In[]:=
Out[]=
WolframModel[{{{x,x},{x,y}}{{y,y},{y,y},{x,z}}},{{0,0},{0,0}},20,"CausalGraph"]
In[]:=
Out[]=
WolframModel[{{1,2},{2,3}}{{1,1},{1,2},{4,2}}]
XYifyRule[{{1,2},{2,3}}{{1,1},{1,2},{4,2}}]
In[]:=
{{x,y},{y,z}}{{x,x},{x,y},{w,y}}
Out[]=