Not much empirical difference between S, K and pure S

Classes of behavior

Eventual periodic

Conservation laws?

Try larger pure S cases

Smallest S case

In[]:=
ListLinePlot[LeafCount/@SKFixedPointEvolveList[s[s][s][s[s]][s][s],4000]]
Out[]=
In[]:=
ListLinePlot[LeafCount/@SKFixedPointEvolveList[s[s][s][s[s]][s][s],10000]]
Out[]=
In[]:=
ListLinePlot[Differences[LeafCount/@SKFixedPointEvolveList[s[s][s][s[s]][s][s],10000]]]
Out[]=
In[]:=
ListLinePlot[Differences[LeafCount/@SKFixedPointEvolveList[s[s][s][s[s]][s][s],20000]]]
Out[]=
In[]:=
Length/@FindTransientRepeat[Differences[LeafCount/@SKFixedPointEvolveList[s[s][s][s[s]][s][s],20000]],5]
Out[]=
{569,0}
In[]:=
ListLinePlot[Depth/@SKFixedPointEvolveList[s[s][s][s[s]][s][s],10000],PlotRangeAll]
Out[]=
In[]:=
ListLinePlot[Depth/@SKFixedPointEvolveList[s[s][s][s[s]][s][s],25000],PlotRangeAll]
Out[]=
In[]:=
ListLinePlot[Ratios[LeafCount/@SKFixedPointEvolveList[s[s][s][s[s]][s][s],25000]],PlotRangeAll]
Out[]=
In[]:=
ListLinePlot[Ratios[LeafCount/@SKFixedPointEvolveList[s[s][s][s[s]][s][s],25000]]]
Out[]=
In[]:=
ListLinePlot[Ratios[LeafCount/@SKOuterEvolveList[s[s][s][s[s]][s][s],500]]]
Out[]=
$Aborted

<< This was using a different algorithm >>

In[]:=
ListLinePlot[Ratios[LeafCount/@SKOuterEvolveList[s[s][s][s[s]][s][s],200]]]
Out[]=

CHECK ALGORITHM!!