Not much empirical difference between S, K and pure S

Classes of behavior

Eventual periodic

Conservation laws?

Try larger pure S cases

Smallest S case

ListLinePlot[LeafCount/@SKFixedPointEvolveList[s[s][s][s[s]][s][s],4000]]
In[]:=
Out[]=
ListLinePlot[LeafCount/@SKFixedPointEvolveList[s[s][s][s[s]][s][s],10000]]
In[]:=
Out[]=
ListLinePlot[Differences[LeafCount/@SKFixedPointEvolveList[s[s][s][s[s]][s][s],10000]]]
In[]:=
Out[]=
ListLinePlot[Differences[LeafCount/@SKFixedPointEvolveList[s[s][s][s[s]][s][s],20000]]]
In[]:=
Out[]=
Length/@FindTransientRepeat[Differences[LeafCount/@SKFixedPointEvolveList[s[s][s][s[s]][s][s],20000]],5]
In[]:=
{569,0}
Out[]=
ListLinePlot[Depth/@SKFixedPointEvolveList[s[s][s][s[s]][s][s],10000],PlotRangeAll]
In[]:=
Out[]=
ListLinePlot[Depth/@SKFixedPointEvolveList[s[s][s][s[s]][s][s],25000],PlotRangeAll]
In[]:=
Out[]=
ListLinePlot[Ratios[LeafCount/@SKFixedPointEvolveList[s[s][s][s[s]][s][s],25000]],PlotRangeAll]
In[]:=
Out[]=
ListLinePlot[Ratios[LeafCount/@SKFixedPointEvolveList[s[s][s][s[s]][s][s],25000]]]
In[]:=
Out[]=
ListLinePlot[Ratios[LeafCount/@SKOuterEvolveList[s[s][s][s[s]][s][s],500]]]
In[]:=
$Aborted
Out[]=

<< This was using a different algorithm >>

ListLinePlot[Ratios[LeafCount/@SKOuterEvolveList[s[s][s][s[s]][s][s],200]]]
In[]:=
Out[]=

CHECK ALGORITHM!!