Not much empirical difference between S, K and pure S

Classes of behavior

Eventual periodic

Conservation laws?

Try larger pure S cases

Smallest S case

In[]:=
ListLinePlot[LeafCount/@SKFixedPointEvolveList[s[s][s][s[s]][s][s],4000]]
Out[]=
50
100
150
1000
2000
3000
4000
In[]:=
ListLinePlot[LeafCount/@SKFixedPointEvolveList[s[s][s][s[s]][s][s],10000]]
Out[]=
50
100
150
200
250
300
2000
4000
6000
8000
10000
In[]:=
ListLinePlot[Differences[LeafCount/@SKFixedPointEvolveList[s[s][s][s[s]][s][s],10000]]]
Out[]=
50
100
150
200
250
300
20
40
60
80
In[]:=
ListLinePlot[Differences[LeafCount/@SKFixedPointEvolveList[s[s][s][s[s]][s][s],20000]]]
Out[]=
100
200
300
400
500
20
40
60
80
100
In[]:=
Length/@FindTransientRepeat[Differences[LeafCount/@SKFixedPointEvolveList[s[s][s][s[s]][s][s],20000]],5]
Out[]=
{569,0}
In[]:=
ListLinePlot[Depth/@SKFixedPointEvolveList[s[s][s][s[s]][s][s],10000],PlotRangeAll]
Out[]=
50
100
150
200
250
300
2
4
6
8
10
12
14
In[]:=
ListLinePlot[Depth/@SKFixedPointEvolveList[s[s][s][s[s]][s][s],25000],PlotRangeAll]
Out[]=
100
200
300
400
500
600
700
2
4
6
8
10
12
14
In[]:=
ListLinePlot[Ratios[LeafCount/@SKFixedPointEvolveList[s[s][s][s[s]][s][s],25000]],PlotRangeAll]
Out[]=
100
200
300
400
500
600
700
1.0
1.1
1.2
1.3
1.4
1.5
In[]:=
ListLinePlot[Ratios[LeafCount/@SKFixedPointEvolveList[s[s][s][s[s]][s][s],25000]]]
Out[]=
100
200
300
400
500
600
700
1.000
1.005
1.010
1.015
1.020
1.025
In[]:=
ListLinePlot[Ratios[LeafCount/@SKOuterEvolveList[s[s][s][s[s]][s][s],500]]]
Out[]=
$Aborted

<< This was using a different algorithm >>

In[]:=
ListLinePlot[Ratios[LeafCount/@SKOuterEvolveList[s[s][s][s[s]][s][s],200]]]
Out[]=
50
100
150
200
1.00
1.05
1.10
1.15
In[]:=
ListLinePlot[Ratios[LeafCount/@NestList[SKStep,s[s][s][s[s]][s][s],200]]]
Out[]=
50
100
150
200
1.00
1.01
1.02
1.03
1.04
1.05
1.06
1.07

CHECK ALGORITHM!!