Using code from ColoredNetworks-06

selected=rules[[{45,18,21,17,31}]]
In[]:=
Out[]=
all=ParallelMapMonitored[TimeConstrained[WolframModel[coloredRuleToHypergraph[#],coloredSpecToHypergraph[{{4,5,6},{1,2,3}}],4]["FinalState"],5]#&,selected/.OrderedNet[{_,x_}]x];
In[]:=
ParallelMapMonitored[OrderedGraphModelPlot[hypergraphToColoredSpec[First[#]],VertexShapeFunction"Circle"]Last[#]&,all]
In[]:=
Out[]=
coloredSpecToHypergraph[{{4,5,6},{1,2,3}}]
In[]:=
{{1,2,3},{4,5,6},{1,4},{2,5},{3,6},{4,1},{5,2},{6,3}}
Out[]=
inits=Get["/Users/sw/Dropbox/Physics/SW2004Material/Data/AllOrderedNetsTo4.m"];
In[]:=
inits[[2]][[1]]
In[]:=
OrderedNet[{{1,1},{{4,5,6},{1,2,3}}}]
Out[]=
coloredRuleToHypergraph/@(selected/.OrderedNet[{_,x_}]x)
In[]:=
Out[]=

TED rules

Take[(rules[[Union[Range[50],{17,18,19,20,21,22,31,32,33,34,45,46,113,114,115,116,117,118,123,124,125,126,143,144,197,198,199,200,201,202,215,216,217,218,231,232}]]]/.(OrderedNet[{_,x_}]x)),5]
In[]:=
Out[]=
OrderedGraphModelPlot[#,Automatic,{{VertexSize.4},{VertexSize.5}}]&/@Take[(rules[[Union[Range[50],{17,18,19,20,21,22,31,32,33,34,45,46,113,114,115,116,117,118,123,124,125,126,143,144,197,198,199,200,201,202,215,216,217,218,231,232}]]]/.(OrderedNet[{_,x_}]x)),5]
In[]:=
Out[]=
coloredRuleToHypergraph/@Take[(rules[[Union[Range[50],{17,18,19,20,21,22,31,32,33,34,45,46,113,114,115,116,117,118,123,124,125,126,143,144,197,198,199,200,201,202,215,216,217,218,231,232}]]]/.(OrderedNet[{_,x_}]x)),5]
In[]:=
Out[]=
RulePlot[WolframModel[#]]&/@%
In[]:=
Out[]=
AllOrderedNetsTo4[[2]]
In[]:=
Out[]=
NetPlot[#,ImageSize45]&/@Select[AllOrderedNetsTo4[[2]],HairNumber[#]0&]
IconGP[#,ImageSize45]&/@Select[AllOrderedNetsTo4[[2]],HairNumber[#]0&]
IconGP[x:_[{_,ls_}],opts___]/;OptionQ[{opts}]:=IconGP[x,IconObject,opts]
In[]:=
IconGP[_[{_,ls_}],nodefunction_,opts___]:=Module[{gp=GraphPlot[GraphRules0[ls]],pts},​​pts=gp[[1,1,1]][[Ordering[VertexList[GraphRules0[ls]]]]];​​Graphics[{gp[[1]],MapIndexed[Function[{var,ind},​​nodefunction[var,​​If[IntegerQ[#],{pts[[Quotient[2+#,3]]],#,ind[[1]]},{pts[[Length[ls]+First[#]]],#}]&/@Extract[ls,ind]]],Take[pts,Length[ls]]]},Sequence@@Rest[gp],opts]]
In[]:=
GraphRules0[ls_]:=Join[Union[Select[#,SameQ@@#&]],Select[Flatten[MapIndexed[#2[[1]]Quotient[#+2,3]&,ls/.{h[n_]3(n+Length[ls])},{2}]],#[[1]]<#[[2]]&]]&[Flatten[MapIndexed[#2[[1]]Quotient[#+2,3]&,ls/.{h[n_]3(n+Length[ls])},{2}]]]
In[]:=
Take[rules[[Union[Range[50],{17,18,19,20,21,22,31,32,33,34,45,46,113,114,115,116,117,118,123,124,125,126,143,144,197,198,199,200,201,202,215,216,217,218,231,232}]]],5]
In[]:=
Out[]=
Map[IconGP,%,{2}]
In[]:=
Part
:Part 3 of {1.22474,1.63299} does not exist.
Part
:Part 3 of {1.22474,1.63299} does not exist.
Part
:Part 3 of {1.22474,1.63299}〚{1,2,3,4,5,6}〛 does not exist.
General
:Further output of Part::partw will be suppressed during this calculation.
Part
:The expression IconObject[{1,2,3,4,5,6},{{{1.22474,1.63299},1,2},{{1.22474,1.63299}〚{1,2,3,4,5,6}〛〚5〛,h[3]},{{1.22474,1.63299}〚{1,2,3,4,5,6}〛〚6〛,h[4]}}] cannot be used as a part specification.
Take
:Cannot take positions 1 through 4 in {0.692258,1.71957}〚{1,2,3,5,4,6,7,8}〛.
Take
:Sequence specification (+n, -n, {+n}​, {-n}​, {m, n}​, or {m, n, s}​) expected at position 2 in Take[IconObject[{0.692258,1.71957}〚{1,2,3,5,4,6,7,8}〛,{{{1,2,3,5,4,6,7,8},4,1},{{0.692258,1.71957}〚{1,2,3,5,4,6,7,8}〛〚3〛,8,1},{{0.692258,1.71957}〚{1,2,3,5,4,6,7,8}〛〚5〛,h[1]}}],IconObject[4,{{{0.692258,1.71957},1,2},{{0.692258,1.71957}〚{1,2,3,5,4,6,7,8}〛〚4〛,11,2},{{0.692258,1.71957}〚{1,2,3,5,4,6,7,8}〛〚6〛,h[2]}}]].
Part
:The expression IconObject[{1,2,3,4,5,6},{{{1.22474,1.63299},1,2},{{1.22474,1.63299}〚{1,2,3,4,5,6}〛〚5〛,h[3]},{{1.22474,1.63299}〚{1,2,3,4,5,6}〛〚6〛,h[4]}}] cannot be used as a part specification.
Take
:Cannot take positions 1 through 4 in {0.692258,1.71957}〚{1,2,3,5,4,6,8,7}〛.
Take
:Sequence specification (+n, -n, {+n}​, {-n}​, {m, n}​, or {m, n, s}​) expected at position 2 in Take[IconObject[{0.692258,1.71957}〚{1,2,3,5,4,6,8,7}〛,{{{1,2,3,5,4,6,8,7},4,1},{{0.692258,1.71957}〚{1,2,3,5,4,6,8,7}〛〚3〛,8,1},{{0.692258,1.71957}〚{1,2,3,5,4,6,8,7}〛〚5〛,h[1]}}],IconObject[4,{{{0.692258,1.71957},1,2},{{0.692258,1.71957}〚{1,2,3,5,4,6,8,7}〛〚4〛,11,2},{{0.692258,1.71957}〚{1,2,3,5,4,6,8,7}〛〚6〛,h[2]}}]].
Part
:The expression IconObject[{1,2,3,4,5,6},{{{1.22474,1.63299},1,2},{{1.22474,1.63299}〚{1,2,3,4,5,6}〛〚5〛,h[3]},{{1.22474,1.63299}〚{1,2,3,4,5,6}〛〚6〛,h[4]}}] cannot be used as a part specification.
General
:Further output of Part::pkspec1 will be suppressed during this calculation.
Take
:Cannot take positions 1 through 4 in {0.692258,1.71957}〚{1,2,3,5,4,7,6,8}〛.
General
:Further output of Take::take will be suppressed during this calculation.
Take
:Sequence specification (+n, -n, {+n}​, {-n}​, {m, n}​, or {m, n, s}​) expected at position 2 in Take[IconObject[{0.692258,1.71957}〚{1,2,3,5,4,7,6,8}〛,{{{1,2,3,5,4,7,6,8},4,1},{{0.692258,1.71957}〚{1,2,3,5,4,7,6,8}〛〚3〛,8,1},{{0.692258,1.71957}〚{1,2,3,5,4,7,6,8}〛〚5〛,h[1]}}],IconObject[4,{{{0.692258,1.71957},1,2},{{0.692258,1.71957}〚{1,2,3,5,4,7,6,8}〛〚4〛,11,2},{{0.692258,1.71957}〚{1,2,3,5,4,7,6,8}〛〚7〛,h[3]}}]].
General
:Further output of Take::seqs will be suppressed during this calculation.
Out[]=