In[]:=
InteractiveListSelectorSW[ParallelMapMonitored[With[{w=WolframModelTest[#,Automatic]},{HypergraphPlot[w["FinalState"]],w["EvolutionObject"]["CausalGraph"]}#]&,qints]]
In[]:=
Out[]=
TotalCausalInvariantQ[WolframModel[{{x,y},{x,z}}{{y,w},{y,x},{w,x}}],1]
In[]:=
False
Out[]=
TotalCausalInvariantQ[WolframModel[{{x,y},{x,z}}{{y,w},{y,x},{w,x}}],2]
In[]:=
False
Out[]=
{{{{1,2,3},{4,3,5}}{{1,1,2},{2,6,4},{5,6,2}}},{{{1,2},{2,3}}{{4,1},{4,3},{1,5},{5,3},{2,5}}},{{{1,2,3},{2,4,5}}{{2,3,6},{6,3,4},{5,2,1}}},{{{1,2},{1,3}}{{4,4},{4,1},{2,4},{3,4}}},{{{1,2},{1,3}}{{4,2},{2,3},{3,4},{1,4}}},{{{1,2},{2,3},{4,2}}{{1,5},{1,2},{5,3},{3,2},{1,4}}}}//Length
In[]:=
6
Out[]=
RandomSample[{{{{1,2,3},{4,3,5}}{{1,1,2},{2,6,4},{5,6,2}}},{{{1,2},{2,3}}{{4,1},{4,3},{1,5},{5,3},{2,5}}},{{{1,2,3},{2,4,5}}{{2,3,6},{6,3,4},{5,2,1}}},{{{1,2},{1,3}}{{4,4},{4,1},{2,4},{3,4}}},{{{1,2},{1,3}}{{4,2},{2,3},{3,4},{1,4}}},{{{1,2},{2,3},{4,2}}{{1,5},{1,2},{5,3},{3,2},{1,4}}}}]
In[]:=
Out[]=
{#,WolframModelTest[#,Automatic]["Init"],Length[WolframModelTest[#,Automatic]["Sizes"]]}&/@%219
In[]:=
Out[]=
InteractiveListSelectorSW[ParallelMapMonitored[With[{w=WolframModelTest[#,Automatic]},{HypergraphPlot[w["FinalState"]],w["EvolutionObject"]["CausalGraph"]}#]&,{{{{1,2,3},{4,5,6},{2,6}}{{7,7,2},{6,2,8},{8,5,7},{8,9,3},{1,6},{10,6},{5,3},{7,11}}},{{{1,2,2},{3,2,4}}{{5,3,5},{5,4,4},{4,5,1}}},{{{1,2,2},{3,2,4}}{{5,3,5},{5,4,4},{4,5,1}}},{{{1,2,2},{3,1,4}}{{2,3,2},{3,4,4},{2,4,5}}},{{{1,1,2},{2,3,4}}{{4,4,3},{4,1,5},{4,5,2}}},{{{1,1,2},{2,3,4}}{{3,3,4},{4,1,1},{3,5,1}}},{{{1,1,2},{2,3,4}}{{4,4,3},{3,1,1},{4,1,5}}},{{{1,1,2},{2,3,4}}{{4,4,3},{3,1,1},{4,1,5}}},{{{1,1,2},{2,3,4}}{{4,4,3},{3,1,1},{4,1,5}}}}]]
In[]:=
Out[]=
//LayeredGraphPlot
In[]:=
Out[]=
ReconstructedSurface[WolframModel[{{x,y,y},{z,y,u}}{{v,z,v},{v,u,u},{u,v,x}},{{0,0,0},{0,0,0}},1000,"FinalState"],10]
In[]:=
Out[]=
ReconstructedSurface[List@@@EdgeList@WolframModel[{{x,y,y},{z,x,u}}{{y,z,y},{z,u,u},{y,u,v}},{{0,0,0},{0,0,0}},1000,"CausalGraph"]]
In[]:=
Out[]=
Out[]=
GraphPlot3D[%]
In[]:=
Out[]=