In[]:=
FindDeadEnds[fun_,t_Integer]:=Intersection[Flatten[Position[VertexOutDegree[fun[t+1]],0]],Flatten[Position[VertexOutDegree[fun[t]],0]]]
In[]:=
ResourceFunction["ParallelMapMonitored"][ResourceFunction["WolframModel"][#,Automatic,20,"LayeredCausalGraph"]&,{{{1,2},{3,2}}{{4,5},{5,1},{1,2},{6,3}},{{1,2},{3,2}}{{4,1},{4,5},{1,2},{2,3}},{{1,2},{3,2}}{{4,5},{4,1},{5,3},{2,6}},{{1,1},{1,2}}{{2,2},{1,2},{1,2},{1,3}},{{1,2},{2,3}}{{3,2},{3,2},{3,4},{1,4}},{{1,2},{2,3}}{{3,1},{3,1},{3,4},{5,4}},{{1,2},{2,3}}{{2,1},{2,1},{4,1},{4,3}},{{1,2},{1,3}}{{2,2},{3,2},{4,3},{1,5}},{{1,2},{1,3}}{{2,2},{3,4},{4,5},{5,1}},{{1,2},{1,3}}{{1,2},{2,4},{4,5},{3,6}},{{1,2},{1,3}}{{2,3},{3,4},{4,5},{1,6}},{{1,2},{2,3}}{{2,1},{2,4},{5,1},{3,6}},{{1,2},{2,3}}{{2,4},{2,4},{2,4},{3,1}},{{1,2},{2,3}}{{1,4},{1,4},{3,4},{5,2}},{{1,2},{2,3}}{{3,4},{3,5},{2,4},{6,1}},{{1,2},{2,3}}{{4,1},{4,3},{5,1},{2,3}},{{1,2},{2,3}}{{4,1},{4,2},{5,1},{3,6}},{{1,2},{3,2}}{{1,3},{3,4},{4,1},{1,5}},{{1,2},{3,2}}{{2,4},{2,1},{4,3},{3,5}}}]
Out[]=
In[]:=
ResourceFunction["ParallelMapMonitored"][ResourceFunction["WolframModel"][#,Automatic,25,"LayeredCausalGraph"]&,{{{1,2},{3,2}}{{4,5},{5,1},{1,2},{6,3}},{{1,2},{3,2}}{{4,1},{4,5},{1,2},{2,3}},{{1,2},{3,2}}{{4,5},{4,1},{5,3},{2,6}},{{1,1},{1,2}}{{2,2},{1,2},{1,2},{1,3}},{{1,2},{2,3}}{{3,2},{3,2},{3,4},{1,4}},{{1,2},{2,3}}{{3,1},{3,1},{3,4},{5,4}},{{1,2},{2,3}}{{2,1},{2,1},{4,1},{4,3}},{{1,2},{1,3}}{{2,2},{3,2},{4,3},{1,5}},{{1,2},{1,3}}{{2,2},{3,4},{4,5},{5,1}},{{1,2},{1,3}}{{1,2},{2,4},{4,5},{3,6}},{{1,2},{1,3}}{{2,3},{3,4},{4,5},{1,6}},{{1,2},{2,3}}{{2,1},{2,4},{5,1},{3,6}},{{1,2},{2,3}}{{2,4},{2,4},{2,4},{3,1}},{{1,2},{2,3}}{{1,4},{1,4},{3,4},{5,2}},{{1,2},{2,3}}{{3,4},{3,5},{2,4},{6,1}},{{1,2},{2,3}}{{4,1},{4,3},{5,1},{2,3}},{{1,2},{2,3}}{{4,1},{4,2},{5,1},{3,6}},{{1,2},{3,2}}{{1,3},{3,4},{4,1},{1,5}},{{1,2},{3,2}}{{2,4},{2,1},{4,3},{3,5}}}]
Out[]=
In[]:=
ResourceFunction["ParallelMapMonitored"][Function[ru,TimeConstrained[Labeled[HighlightGraph[ResourceFunction["WolframModel"][ru,Automatic,20,"LayeredCausalGraph"],FindDeadEnds[ResourceFunction["WolframModel"][ru,Automatic,#,"LayeredCausalGraph"]&,25],VertexSize1],ru],5]],{{{1,2},{3,2}}{{4,5},{5,1},{1,2},{6,3}},{{1,2},{3,2}}{{4,1},{4,5},{1,2},{2,3}},{{1,2},{3,2}}{{4,5},{4,1},{5,3},{2,6}},{{1,1},{1,2}}{{2,2},{1,2},{1,2},{1,3}},{{1,2},{2,3}}{{3,2},{3,2},{3,4},{1,4}},{{1,2},{2,3}}{{3,1},{3,1},{3,4},{5,4}},{{1,2},{2,3}}{{2,1},{2,1},{4,1},{4,3}},{{1,2},{1,3}}{{2,2},{3,2},{4,3},{1,5}},{{1,2},{1,3}}{{2,2},{3,4},{4,5},{5,1}},{{1,2},{1,3}}{{1,2},{2,4},{4,5},{3,6}},{{1,2},{1,3}}{{2,3},{3,4},{4,5},{1,6}},{{1,2},{2,3}}{{2,1},{2,4},{5,1},{3,6}},{{1,2},{2,3}}{{2,4},{2,4},{2,4},{3,1}},{{1,2},{2,3}}{{1,4},{1,4},{3,4},{5,2}},{{1,2},{2,3}}{{3,4},{3,5},{2,4},{6,1}},{{1,2},{2,3}}{{4,1},{4,3},{5,1},{2,3}},{{1,2},{2,3}}{{4,1},{4,2},{5,1},{3,6}},{{1,2},{3,2}}{{1,3},{3,4},{4,1},{1,5}},{{1,2},{3,2}}{{2,4},{2,1},{4,3},{3,5}}}]
Out[]=
Max’s code
Max’s code
In[]:=
DeadEndEvents[evolution_,t_]:=Module[{terminalEvents},terminalEvents=First/@Position[0]@VertexOutDegree@evolution["LayeredCausalGraph"];terminalEvents〚First/@Position[Except[t,_Integer]]@evolution["AllEventsGenerationsList"]〚terminalEvents〛〛]
In[]:=
DeadEndEvents[rule_,init_,t_]:=DeadEndEvents[ResourceFunction["WolframModel"][rule,init,t],t]
In[]:=
ResourceFunction["ParallelMapMonitored"][Function[ru,TimeConstrained[Labeled[HighlightGraph[ResourceFunction["WolframModel"][ru,Automatic,20,"LayeredCausalGraph"],DeadEndEvents[ru,Automatic,25],VertexSize1],ru],5]],{{{1,2},{3,2}}{{4,5},{5,1},{1,2},{6,3}},{{1,2},{3,2}}{{4,1},{4,5},{1,2},{2,3}},{{1,2},{3,2}}{{4,5},{4,1},{5,3},{2,6}},{{1,1},{1,2}}{{2,2},{1,2},{1,2},{1,3}},{{1,2},{2,3}}{{3,2},{3,2},{3,4},{1,4}},{{1,2},{2,3}}{{3,1},{3,1},{3,4},{5,4}},{{1,2},{2,3}}{{2,1},{2,1},{4,1},{4,3}},{{1,2},{1,3}}{{2,2},{3,2},{4,3},{1,5}},{{1,2},{1,3}}{{2,2},{3,4},{4,5},{5,1}},{{1,2},{1,3}}{{1,2},{2,4},{4,5},{3,6}},{{1,2},{1,3}}{{2,3},{3,4},{4,5},{1,6}},{{1,2},{2,3}}{{2,1},{2,4},{5,1},{3,6}},{{1,2},{2,3}}{{2,4},{2,4},{2,4},{3,1}},{{1,2},{2,3}}{{1,4},{1,4},{3,4},{5,2}},{{1,2},{2,3}}{{3,4},{3,5},{2,4},{6,1}},{{1,2},{2,3}}{{4,1},{4,3},{5,1},{2,3}},{{1,2},{2,3}}{{4,1},{4,2},{5,1},{3,6}},{{1,2},{3,2}}{{1,3},{3,4},{4,1},{1,5}},{{1,2},{3,2}}{{2,4},{2,1},{4,3},{3,5}}}]
Out[]=