BellB[100]
In[]:=
47585391276764833658790768841387207826363669686825611466616334637559114497892442622672724044217756306953557882560751
Out[]=
BellB
DiscreteAsymptotic[BellB[n],{n,Infinity,1}]
In[]:=
-1-n+
n
ProductLog[n]
1
2
n
ProductLog[n]
n
Out[]=
AsymptoticGreater[BellB[n],n^n,n->Infinity]
In[]:=
AsymptoticGreater[BellB[n],,n∞]
n
n
Out[]=
AsymptoticGreater[BellB[n],Exp[n],n->Infinity]
In[]:=
AsymptoticGreater[BellB[n],,n∞]
n
Out[]=
ListLinePlot[Log10[Table[N[BellB[n]/(n^n)],{n,100}]]]
In[]:=
Out[]=
ListLinePlot[Log10[Table[N[BellB[n]/(2^n)],{n,100}]]]
In[]:=
Out[]=
ListLinePlot[Log10[Table[N[BellB[n]/(3^n)],{n,100}]]]
In[]:=
Out[]=
ListLinePlot[Log10[Table[N[BellB[n]/((Log[n])^n)],{n,100}]]]
In[]:=
1
0
Out[]=
ListLinePlot[Log10[Table[N[BellB[n]/((Log[n]^2)^n)],{n,100}]]]
In[]:=
1
0
Out[]=
ListLinePlot[Log10[Table[N[BellB[n]/((Log[n]^1.8)^n)],{n,100}]]]
In[]:=
1
0.
Out[]=
ListLinePlot[Log10[Table[N[BellB[n]/((Log[n]^1.7)^n)],{n,100}]]]
In[]:=
1
0.
Out[]=
N[Sqrt[3]]
In[]:=
1.73205
Out[]=
ListLinePlot[Log10[Table[N[BellB[n]/((Log[n]^Sqrt[3])^n)],{n,100}]]]
In[]:=
1
0
Out[]=
ListLinePlot[Log10[Table[N[BellB[n]/((Log[n]^1.5)^n)],{n,100}]]]
In[]:=
1
0.
Out[]=
ListLinePlot[Log10[Table[N[BellB[n]/((Log[n]^1.65)^n)],{n,100}]]]
In[]:=
1
0.
Out[]=
ListLinePlot[Log10[Table[N[BellB[n]/((Log[n]^1.5)^n)],{n,100}]]]
ListLinePlot[Log10[Table[N[BellB[n]/(n!)],{n,100}]]]
In[]:=
Out[]=
Plot[Sum[Log10[N[BellB[n]/((Log[n]^a)^n)]],{n,10,100}],{a,1.5,1.8}]
In[]:=
Out[]=
FindRoot[Sum[Log10[N[BellB[n]/((Log[n]^a)^n)]],{n,10,100}],{a,1.5,1.8}]
In[]:=
{a1.65302}
Out[]=
FindRoot[Sum[Log10[N[BellB[n]/((Log[n]^a)^n)]],{n,10,200}],{a,1.5,1.8}]
In[]:=
{a1.8004}
Out[]=
ListLinePlot[Log10[Table[N[BellB[n]/((Log[n]^2)^n)],{n,200}]]]
In[]:=
1
0
Out[]=
ListLinePlot[Log10[Table[N[BellB[n]/((Log[n]^2)^n)],{n,200}]]]
ListLinePlot[Log10[Table[N[BellB[n]/((Log[n])^n)],{n,200}]]]
In[]:=
1
0
Out[]=
ListLinePlot[Log10[Table[N[BellB[n]/((Log[n])^(nLog[n]))],{n,200}]]]
In[]:=
0
0
1
466.127
4.61512
1
471.747
4.62497
1
477.377
4.63473
Out[]=
ListLinePlot[Log10[Table[N[BellB[n]/((2)^(nLog[n]))],{n,200}]]]
In[]:=
1
1028.23
2.
1
1034.51
2.
1
1038.79
2.
Out[]=
ListLinePlot[Log10[Table[N[BellB[n]/((2)^N[(nLog[n])])],{n,1000}]]]
In[]:=
Out[]=
ListLinePlot[Log10[Table[N[BellB[n]/((2)^N[(nLog[n])])],{n,10000}]]]
In[]:=
$Aborted
Out[]=
est[n_]:=N[BellB[n]/((2)^N[(nLog[n])])]
In[]:=
est[1000]
In[]:=
1.08172×
-152
10
Out[]=
est[2000]
In[]:=
7.84819×
-228
10
Out[]=
est[3000]
In[]:=
8.71715×
-267
10
Out[]=
est[4000]
In[]:=
4.51156×
-281
10
Out[]=
est[5000]
In[]:=
1.77368×
-276
10
Out[]=
est[6000]
In[]:=
1.57409×
-256
10
Out[]=
est[7000]
In[]:=
1.29238×
-223
10
Out[]=
est[8000]
In[]:=
1.83435×
-179
10
Out[]=
est[9000]
In[]:=
2.19564×
-125
10
Out[]=
est[10000]
In[]:=
2.06428×
-62
10
Out[]=
est[10500]
In[]:=
7.42663×
-28
10
Out[]=
est[10700]
In[]:=
1.72452×
-13
10
Out[]=
est[10800]
In[]:=
3.41454×
-6
10
Out[]=
est[10850]
In[]:=
0.016211
Out[]=
est[10852]
In[]:=
0.0227644
Out[]=
est[10860]
In[]:=
0.0885819
Out[]=
est[10870]
In[]:=
0.484872
Out[]=
est[10874]
In[]:=
0.957522
Out[]=
est[10875]
In[]:=
1.13514
Out[]=
est[10888]
In[]:=
10.3851
Out[]=
est[10890]
In[]:=
14.6025
Out[]=
est[10900]
In[]:=
80.3417
Out[]=
est[11000]
In[]:=
2.24313×
9
10
Out[]=
Table[est[n],{n,20}]
In[]:=
{1.,0.765092,0.509125,0.321238,0.196588,0.11783,0.0695918,0.0406636,0.0235708,0.0135798,0.00778704,0.00444914,0.0025349,0.00144115,0.000817983,0.000463713,0.000262647,0.000148675,0.0000841295,0.0000475979}
Out[]=
Table[BellB[n]/2^n,{n,20}]
In[]:=
,,,,,,,,,,,,,,,,,,,
1
2
1
2
5
8
15
16
13
8
203
64
877
128
1035
64
21147
512
115975
1024
339285
1024
4213597
4096
27644437
8192
95449661
8192
1382958545
32768
10480142147
65536
20716217451
32768
682076806159
262144
5832742205057
524288
12931039558843
262144
Out[]=
N[%]
In[]:=
{0.5,0.5,0.625,0.9375,1.625,3.17188,6.85156,16.1719,41.3027,113.257,331.333,1028.71,3374.57,11651.6,42204.5,159914.,632209.,2.60192×,1.11251×,4.9328×}
6
10
7
10
7
10
Out[]=
est[10000]
Table[2^n<BellB[n],{n,10}]
In[]:=
{False,False,False,False,True,True,True,True,True,True}
Out[]=