{{1,2},{2,1}}{{2,3},{3,2}

Permute elements in a relation; does the rule stay unchanged?

GraphAutomorphismGroup[
In[]:=
GraphAutomorphismGroup

Out[]=
PermutationGroup[{Cycles[{{3,6},{5,7},{8,10}}],Cycles[{{2,5,10,9,8,7},{3,6,4}}],Cycles[{{1,2},{3,7},{5,6}}]}]
In[]:=
GraphAutomorphismGroup[Graph[Rule@@@{{x,y},{y,z},{z,x}}]]
Out[]=
PermutationGroup[{Cycles[{{1,2,3}}]}]
Can one find rules that give particular automorphism groups?

Do LHS’es have symmetries ... and then do the rewrites preserve them?

E.g.
{{1,2},{2,1}}{{2,1},{3,2},{1,1}}
In[]:=
FindCanonicalWolframModel[{{x,y}}{{x,y},{y,z},{z,x}}]
Out[]=
{{1,2}}{{1,2},{2,3},{3,1}}
In[]:=
FindCanonicalWolframModel[{{y,x}}->{{y,x},{x,z},{z,y}}]
Out[]=
{{1,2}}{{1,2},{2,3},{3,1}}
In[]:=
FindCanonicalWolframModel[{{x,y}}->{{y,x},{x,z},{z,y}}]
Out[]=
{{1,2}}{{1,3},{2,1},{3,2}}
Do LHS and RHS separately have a certain invariance under renamings?
Symmetric graphs: https://www.wolframscience.com/nks/notes-9-8--symmetric-graphs/
In[]:=
GraphData["Symmetric"]
Out[]=

What is the analog of totalistic rules for graphs?

Perhaps there exist multiple rules, covering different cases that compute only the total number a given piece of graph structure [???]