2,2 5,2
2,2 5,2
InteractiveListSelectorSW[ParallelMapMonitored[FinalPicture[#,{{0,0},{0,0}},4]#&,Table[RandomWolframModelRule[{{2,2}}{{5,2}}],50]]]
In[]:=
Out[]=
res=ParallelMapMonitored[WolframModelTest[#,{{0,0},{0,0}}]&,Table[RandomWolframModelRule[{{2,2}}{{5,2}}],50]];
In[]:=
gres=GroupBy[res,WMFilter4];
In[]:=
Length/@gres
In[]:=
Disconnected17,FewEvents14,MaybeInteresting1,DiedFast14,BoringDifferencesAfterTransient2,BoringDifferences2
Out[]=
MakePictures2[gres["MaybeInteresting"]]
In[]:=
Out[]=
res=ParallelMapMonitored[WolframModelTest[#,{{0,0},{0,0}}]&,Table[RandomWolframModelRule[{{2,2}}{{5,2}}],1000]];
In[]:=
gres=GroupBy[res,WMFilter4];
In[]:=
{3,-2}
»
{2,0,-1}
»
{3,-2}
»
Length/@gres
In[]:=
Disconnected397,DiedFast280,FewEvents253,TooMuchOfAVertex2,BoringDifferences34,LinearRecurrenceGrowth2,MaybeInteresting25,BoringDifferencesAfterTransient7
Out[]=
MakePictures2[gres["MaybeInteresting"]]
In[]:=
Out[]=
MakeDirectPictures2[{{{{1,2},{3,2}}{{4,5},{5,2},{2,4},{4,1},{5,3}},{{0,0},{0,0}},7},{{{1,2},{2,3}}{{4,1},{4,3},{2,1},{2,3},{4,5}},{{0,0},{0,0}},7},{{{1,2},{3,4}}{{1,3},{3,5},{5,2},{6,5},{4,6}},{{0,0},{0,0}},6}},2]
In[]:=
Out[]=
RulePlot[WolframModel[{{1,2},{3,2}}{{4,5},{5,2},{2,4},{4,1},{5,3}}]]
In[]:=
Out[]=
EvolutionPicture2[{{1,2},{3,2}}{{4,5},{5,2},{2,4},{4,1},{5,3}},6]
In[]:=
Out[]=
EvolutionPicture2[{{1,2},{3,2}}{{4,5},{5,2},{2,4},{4,1},{5,3}},8]
In[]:=
Out[]=
Graph3D
In[]:=
Out[]=
EvolutionPicture2[{{1,2},{3,2}}{{4,5},{5,2},{2,4},{4,1},{5,3}},{{1,2},{3,2}},6]
In[]:=
,
Out[]=
EvolutionPicture2[{{1,2},{3,2}}{{4,5},{5,2},{2,4},{4,1},{5,3}},{{1,2},{2,3},{2,1},{3,2}},6]
In[]:=
Out[]=
EvolutionPicture2[{{1,2},{3,2}}{{4,5},{5,2},{2,4},{4,1},{5,3}},{{1,2},{1,2}},6]
In[]:=
Out[]=
Comparison:
Comparison:
EvolutionPicture2[{{1,2},{3,2}}{{4,2},{2,4},{4,1},{3,4}},{{0,0},{0,0}},8]
In[]:=
Out[]=
Graph3D
In[]:=
Out[]=
More:
More:
MakePictures2[gres["LinearRecurrenceGrowth"]]
In[]:=
Out[]=
MakePictures2[gres["DiedFast"]]
In[]:=
MakePictures2[gres["FewEvents"]]
In[]:=
Out[]=
gres["MaybeInteresting"]//First
In[]:=
#["EvolutionObject"]["TerminationReason"]&/@gres["MaybeInteresting"]
In[]:=
{MaxEdges,MaxVertices,MaxVertices,MaxEdges,MaxVertices,MaxEdges,MaxEdges,MaxEdges,MaxVertices,MaxEdges,MaxVertices,MaxEdges,MaxEdges,MaxEdges,MaxEdges,MaxEdges,MaxVertices,MaxVertices,MaxEdges,MaxEdges,MaxEdges,MaxVertices,MaxEdges,MaxVertices,MaxVertexDegree}
Out[]=
Counts[#["EvolutionObject"]["TerminationReason"]&/@gres["DiedFast"]]
In[]:=
MaxVertexDegree103,FixedPoint177
Out[]=
Counts[#["EvolutionObject"]["TerminationReason"]&/@res]
In[]:=
MaxEdges181,MaxVertices406,MaxVertexDegree232,FixedPoint181
Out[]=
MakePictures2[Select[res,#["EvolutionObject"]["TerminationReason"]==="MaxVertices"&]]
In[]:=
Out[]=
MakePictures2[Select[res,#["EvolutionObject"]["TerminationReason"]==="MaxEdges"&]]
In[]:=
cres=FilterConnected[res];
In[]:=
Length[cres]
In[]:=
142
Out[]=
Length[res]
In[]:=
1000
Out[]=
MakePictures2[Select[cres,#["EvolutionObject"]["TerminationReason"]==="MaxVertices"&]]
In[]:=
Out[]=
MakePictures2[Select[cres,#["EvolutionObject"]["TerminationReason"]==="MaxEdges"&]]
In[]:=
Out[]=
EvolutionPicture2[{{1,1},{2,3}}{{4,4},{4,5},{5,3},{3,6},{1,3}},15]
In[]:=
Out[]=
ResourceFunction["RandomWolframModel"]
In[]:=
Out[]=
rules=Select[Table[RandomWolframModelRule[{{2,2}}{{5,2}}],1000],FullyConnectedRuleQ];
In[]:=
Length[%]
In[]:=
147
Out[]=
res=ParallelMapMonitored[WolframModelTest[#,{{0,0},{0,0}}]&,rules];
In[]:=
cres=FilterConnected[res];
In[]:=
MakePictures2[Select[cres,#["EvolutionObject"]["TerminationReason"]==="MaxVertices"&]]
In[]:=
Out[]=
MakePictures2[Select[cres,#["EvolutionObject"]["TerminationReason"]==="MaxEdges"&]]
In[]:=
Out[]=
rules=Select[Table[RandomWolframModelRule[{{2,2}}{{5,2}}],10000],FullyConnectedRuleQ];
In[]:=
Length[%]
In[]:=
1380
Out[]=
res=ParallelMapMonitored[WolframModelTest[#,{{0,0},{0,0}}]&,rules];
In[]:=
cres=FilterConnected[res];
In[]:=
Counts[#["EvolutionObject"]["TerminationReason"]&/@cres]
In[]:=
MaxVertices146,MaxVertexDegree192,MaxEdges77,FixedPoint33
Out[]=
MakePictures2[Select[cres,#["EvolutionObject"]["TerminationReason"]==="MaxEdges"&]]
In[]:=
Out[]=
MakeDirectPictures2[{{{{1,2},{2,3}}{{4,2},{4,5},{2,3},{3,5},{1,5}},{{0,0},{0,0}},8},{{{1,2},{3,2}}{{4,1},{1,4},{4,2},{5,4},{3,5}},{{0,0},{0,0}},7},{{{1,2},{3,2}}{{4,2},{4,5},{2,5},{2,1},{3,5}},{{0,0},{0,0}},7}},2]
In[]:=
Out[]=
MakeDirectPictures2[{{{{1,2},{2,3}}{{4,2},{4,5},{2,3},{3,5},{1,5}},{{0,0},{0,0}},8},{{{1,2},{3,2}}{{4,1},{1,4},{4,2},{5,4},{3,5}},{{0,0},{0,0}},7},{{{1,2},{3,2}}{{4,2},{4,5},{2,5},{2,1},{3,5}},{{0,0},{0,0}},7},{{{1,2},{2,3}}{{4,2},{2,4},{4,5},{4,1},{3,5}},{{0,0},{0,0}},6},{{{1,2},{2,3}}{{4,5},{4,5},{1,4},{2,4},{3,4}},{{0,0},{0,0}},6}},2]
In[]:=
Out[]=
MakePictures2[Select[cres,#["EvolutionObject"]["TerminationReason"]==="MaxVertices"&]]
In[]:=
Out[]=
rules=Select[Table[RandomWolframModelRule[{{2,2}}{{5,2}}],20000],FullyConnectedRuleQ];
In[]:=
Length[%]
In[]:=
2664
Out[]=
res=ParallelMapMonitored[WolframModelTest[#,{{0,0},{0,0}}]&,rules];
In[]:=
cres=FilterConnected[res];
In[]:=
Counts[#["EvolutionObject"]["TerminationReason"]&/@cres]
In[]:=
FixedPoint70,MaxEdges123,MaxVertexDegree343,MaxVertices311
Out[]=
MakePictures2[Select[cres,#["EvolutionObject"]["TerminationReason"]==="MaxEdges"&]]
In[]:=
Out[]=
MakeDirectPictures2[{{{{1,2},{1,3}}{{4,1},{4,2},{1,2},{4,5},{5,2}},{{0,0},{0,0}},9},{{{1,2},{2,3}}{{2,4},{2,5},{4,1},{5,1},{3,4}},{{0,0},{0,0}},6},{{{1,2},{3,2}}{{4,5},{4,1},{5,1},{5,2},{3,4}},{{0,0},{0,0}},9},{{{1,2},{1,3}}{{2,1},{2,4},{1,5},{5,4},{5,3}},{{0,0},{0,0}},6}},2]
In[]:=
Out[]=
MakeDirectPictures2[{{{{1,2},{1,3}}{{1,4},{1,5},{2,4},{4,3},{5,3}},{{0,0},{0,0}},11},{{{1,2},{1,3}}{{2,1},{2,4},{1,5},{5,4},{5,3}},{{0,0},{0,0}},8},{{{1,2},{2,3}}{{2,4},{2,5},{4,1},{5,1},{3,4}},{{0,0},{0,0}},8},{{{1,2},{2,3}}{{4,1},{4,3},{2,1},{2,3},{4,5}},{{0,0},{0,0}},9},{{{1,2},{2,3}}{{4,2},{4,5},{2,3},{3,5},{1,5}},{{0,0},{0,0}},10},{{{1,2},{2,3}}{{4,5},{4,5},{1,4},{2,4},{3,4}},{{0,0},{0,0}},8},{{{1,2},{3,2}}{{4,1},{1,4},{4,2},{5,4},{3,5}},{{0,0},{0,0}},9},{{{1,2},{3,2}}{{4,5},{4,1},{5,1},{5,2},{3,4}},{{0,0},{0,0}},11},{{{1,2},{3,2}}{{4,5},{5,2},{2,4},{4,1},{5,3}},{{0,0},{0,0}},9},{{{1,2},{3,2}}{{4,5},{5,2},{2,4},{4,1},{5,3}},{{0,0},{0,0}},10}},0]
In[]:=
Out[]=
{{{{1,2},{2,3}}{{4,1},{4,3},{2,1},{2,3},{4,5}},{{0,0},{0,0}},9},{{{1,2},{1,3}}{{1,4},{1,5},{2,4},{4,3},{5,3}},{{0,0},{0,0}},11},{{{1,2},{1,3}}{{2,1},{2,4},{1,5},{5,4},{5,3}},{{0,0},{0,0}},8},{{{1,2},{2,3}}{{2,4},{2,5},{4,1},{5,1},{3,4}},{{0,0},{0,0}},8},{{{1,2},{3,2}}{{4,5},{4,1},{5,1},{5,2},{3,4}},{{0,0},{0,0}},11},{{{1,2},{3,2}}{{4,1},{1,4},{4,2},{5,4},{3,5}},{{0,0},{0,0}},9},{{{1,2},{3,2}}{{4,5},{5,2},{2,4},{4,1},{5,3}},{{0,0},{0,0}},9}}//Length
In[]:=
7
Out[]=
EvolutionPicture2[{{1,2},{2,3}}{{4,1},{4,3},{2,1},{2,3},{4,5}},{{0,0},{0,0}},8]
In[]:=
Out[]=
ggg=
;
In[]:=
{#,VertexCount[NeighborhoodGraph[ggg,#]]}&/@VertexList[ggg]
In[]:=
Out[]=
Cases[%,{x_,2}x]
In[]:=
Out[]=
VertexDelete[ggg,%]
In[]:=
Out[]=
2,26,2
2,26,2
rules=Parallelize[Select[Table[RandomWolframModelRule[{{2,2}}{{6,2}}],10000],FullyConnectedRuleQ]];
In[]:=
ResourceObject::updavb:There is an update available for "FindCanonicalWolframModel. .
(kernel 59)
ResourceObject::updavb:There is an update available for "FindCanonicalWolframModel. .
(kernel 56)
ResourceObject::updavb:There is an update available for "FindCanonicalWolframModel. .
(kernel 55)
ResourceObject::updavb:There is an update available for "FindCanonicalWolframModel. .
(kernel 54)
ResourceObject::updavb:There is an update available for "FindCanonicalWolframModel. .
(kernel 53)
ResourceObject::updavb:There is an update available for "FindCanonicalWolframModel. .
(kernel 64)
ResourceObject::updavb:There is an update available for "FindCanonicalWolframModel. .
(kernel 63)
ResourceObject::updavb:There is an update available for "FindCanonicalWolframModel. .
(kernel 62)
ResourceObject::updavb:There is an update available for "FindCanonicalWolframModel. .
(kernel 61)
ResourceObject::updavb:There is an update available for "FindCanonicalWolframModel. .
(kernel 60)
ResourceObject::updavb:There is an update available for "FindCanonicalWolframModel. .
(kernel 58)
ResourceObject::updavb:There is an update available for "FindCanonicalWolframModel. .
(kernel 57)
Syntax::com:Warning: comma encountered with no adjacent expression. The expression will be treated as Null. (line 3 of "put.wl").
(kernel 28)
Syntax::sntue: Unexpected end of file (probably unfinished expression)
(line 4 of put.wl).
(line 4 of put.wl).
(kernel 27)
Length[%]
In[]:=
1118
Out[]=
res=ParallelMapMonitored[WolframModelTest[#,{{0,0},{0,0}}]&,rules];
In[]:=
cres=FilterConnected[res];
In[]:=
Counts[#["EvolutionObject"]["TerminationReason"]&/@cres]
In[]:=
MaxVertices115,MaxVertexDegree116,MaxEdges70,FixedPoint22
Out[]=
MakePictures2[Select[cres,#["EvolutionObject"]["TerminationReason"]==="MaxEdges"&]]
In[]:=
Out[]=
Ma