Graphs as Initial Conditions

inits=EdgeList/@
,
,

In[]:=
{{12,13,23},{12,14,23,34},{12,13,14,23,24,34}}
Out[]=
FindCycle

In[]:=
{{12,23,31}}
Out[]=
dinits={{12,23,31},{12,23,34,41},{12,23,31,14,24,34},{12,23,31,41,42,43}}/.RuleList;
In[]:=
dinits
In[]:=
{{{1,2},{2,3},{3,1}},{{1,2},{2,3},{3,4},{4,1}},{{1,2},{2,3},{3,1},{1,4},{2,4},{3,4}},{{1,2},{2,3},{3,1},{4,1},{4,2},{4,3}}}
Out[]=
eee=EnumerateWolframModelRules[{{1,2}}{{2,2}},2]
In[]:=
Out[]=
WolframModelExplorer1BinaryIC[eee,#,4]&/@dinits
In[]:=
Out[]=
Table[RandomWolframModelRule[{{2,2}}{{3,2}},4],10]
In[]:=
Out[]=
WolframModelExplorer1BinaryIC[%,#,4]&/@dinits
In[]:=
Out[]=
{{{{1,2},{1,3}}{{2,1},{3,2},{4,2}},{{1,2},{2,3},{3,1},{1,4},{2,4},{3,4}},4}}
{{{{1,2},{1,3}}{{2,1},{3,2},{4,2}},{{1,2},{2,3},{3,1},{4,1},{4,2},{4,3}},4}}
{{{{1,2},{3,4}}{{1,3},{2,3},{4,1}},{{1,2},{2,3},{3,4},{4,1}},4}}
WolframModelExplorer1BinaryAll[{{{{1,2},{1,3}}{{2,1},{3,2},{4,2}},{{1,2},{2,3},{3,1},{1,4},{2,4},{3,4}},10},{{{1,2},{1,3}}{{2,1},{3,2},{4,2}},{{1,2},{2,3},{3,1},{4,1},{4,2},{4,3}},10},{{{1,2},{3,4}}{{1,3},{2,3},{4,1}},{{1,2},{2,3},{3,4},{4,1}},10}}]
In[]:=
Out[]=
WolframModelExplorer1BinaryAll[Catenate[Table[{RandomWolframModelRule[{{2,2}}{{3,2}},4],#,4}&/@dinits,10]]]
In[]:=
Out[]=
fixt[list_,t_Integer]:=ReplacePart[#,-1t]&/@list
In[]:=
WolframModelExplorer1BinaryAll[fixt[{{{{1,2},{1,3}}{{1,4},{2,1},{2,3}},{{1,2},{2,3},{3,1},{4,1},{4,2},{4,3}},4},{{{1,2},{1,3}}{{1,4},{2,1},{2,2}},{{1,2},{2,3},{3,1},{4,1},{4,2},{4,3}},4},{{{1,2},{2,3}}{{2,1},{2,3},{3,4}},{{1,2},{2,3},{3,1},{1,4},{2,4},{3,4}},4}},12]]
In[]:=
Out[]=
WolframModelExplorer1BinaryAll[fixt[{{{{1,2},{1,3}}{{1,4},{2,1},{2,3}},{{0,0},{0,0}},4},{{{1,2},{2,3}}{{2,1},{2,3},{3,4}},{{0,0},{0,0}},4}},15]]
In[]:=
Out[]=
fixt[{{{{1,2},{1,3}}{{1,4},{2,1},{2,3}},{{0,0},{0,0}},4},{{{1,2},{2,3}}{{2,1},{2,3},{3,4}},{{0,0},{0,0}},4}},15]
In[]:=
{{{{1,2},{1,3}}{{1,4},{2,1},{2,3}},{{0,0},{0,0}},15},{{{1,2},{2,3}}{{2,1},{2,3},{3,4}},{{0,0},{0,0}},15}}
Out[]=
WolframModelExplorer1BinaryAll[Catenate[Table[{RandomWolframModelRule[{{3,2}}{{5,2}},7],#,6}&/@dinits,10]]]
In[]:=
Out[]=
{{{{1,2},{3,4},{5,6}}{{1,4},{2,7},{3,2},{7,3},{7,5}},{{1,2},{2,3},{3,1}},6},{{{1,2},{3,4},{5,6}}{{1,3},{4,3},{5,7},{7,3},{7,4}},{{1,2},{2,3},{3,1},{1,4},{2,4},{3,4}},6},{{{1,2},{2,3},{4,5}}{{1,1},{2,4},{4,3},{5,3},{6,3}},{{1,2},{2,3},{3,1},{1,4},{2,4},{3,4}},6},{{{1,2},{1,3},{4,5}}{{1,2},{1,6},{2,2},{4,5},{6,3}},{{1,2},{2,3},{3,1},{4,1},{4,2},{4,3}},6},{{{1,2},{3,4},{5,6}}{{1,3},{3,6},{3,7},{4,7},{5,4}},{{1,2},{2,3},{3,1},{4,1},{4,2},{4,3}},6},{{{1,2},{1,3},{2,4}}{{1,3},{1,5},{3,2},{4,2},{5,4}},{{1,2},{2,3},{3,1},{1,4},{2,4},{3,4}},6}};
In[]:=
WolframModelExplorer1BinaryAll[fixt[%,10]]
In[]:=
Out[]=
WolframModelExplorer1BinaryAll[fixt[%154,6]]
In[]:=
Out[]=
WolframModelExplorer1BinaryAll[{{{{1,2},{1,3},{2,4}}{{1,3},{1,5},{3,2},{4,2},{5,4}},{{1,2},{2,3},{3,1},{1,4},{2,4},{3,4}},12}}]
In[]:=
Out[]=
WolframModelExplorer1BinaryAll[{{{{1,2},{1,3},{2,4}}{{1,3},{1,5},{3,2},{4,2},{5,4}},Table[0,3,2],12}}]
In[]:=
Out[]=
WolframModelExplorer1BinaryAll[{{{{1,2},{1,3},{2,4}}{{1,3},{1,5},{3,2},{4,2},{5,4}},Table[0,3,2],15}}]
In[]:=
Out[]=
RulePlot[WolframModel[{{1,2},{1,3},{2,4}}{{1,3},{1,5},{3,2},{4,2},{5,4}}]]
In[]:=
Out[]=