Binary Edges, Multiple Transformations

WolframModelExplorer1R[Table[RandomWolframModelRuleMulti[{{{{1,2}}{{2,2}},3},{{{2,2}}{{1,2}},2}}],30],4]
EnumerateWolframModelRules[{{1,2}}{{2,2}},2]
In[]:=
Out[]=
EnumerateWolframModelRules[{{2,2}}{{1,2}},2]
In[]:=
Out[]=
Outer[List,EnumerateWolframModelRules[{{1,2}}{{2,2}},2],EnumerateWolframModelRules[{{2,2}}{{1,2}},2],1]
In[]:=
Out[]=
Catenate[%]
In[]:=
Out[]=
WolframModelExplorer1[%226,{{0,0},{0,0}},4]
In[]:=
(Nothing interesting)
WolframModelExplorer1Binary[Table[First@RandomWolframModelRuleMulti[{{{{1,2}}{{2,2}},3},{{{2,2}}{{1,2}},2}}],10],{{0,0},{0,0}},4]
In[]:=
Out[]=
WolframModelExplorer1Binary[Table[First@RandomWolframModelRuleMulti[{{{{1,2}}{{2,2}},3},{{{2,2}}{{1,2}},2}}],20],{{0,0},{0,0}},4]
In[]:=
Out[]=
{{{{1,2}}{{1,3},{3,2}},{{1,1},{2,1}}{{1,1}}},{{{1,2}}{{3,1},{3,2}},{{1,1},{2,1}}{{2,1}}}}
WolframModelExplorer1Binary[{{{{1,2}}{{1,3},{3,2}},{{1,1},{2,1}}{{1,1}}},{{{1,2}}{{3,1},{3,2}},{{1,1},{2,1}}{{2,1}}}},{{0,0},{0,0}},6]
In[]:=
Out[]=
WolframModelExplorer1Binary[{{{{1,2}}{{1,3},{3,2}},{{1,1},{2,1}}{{1,1}}},{{{1,2}}{{3,1},{3,2}},{{1,1},{2,1}}{{2,1}}}},{{0,0}},6]
In[]:=
Out[]=
WolframModelExplorer1Binary[{{{{1,2}}{{1,3},{3,2}}},{{{1,2}}{{3,1},{3,2}},{{1,1},{2,1}}{{2,1}}}},{{0,0},{0,0}},6]
In[]:=
Out[]=
WolframModelExplorer1Binary[Table[First@RandomWolframModelRuleMulti[{{{{2,2}}{{3,2}},3},{{{2,2}}{{1,2}},2}}],20],{{0,0},{0,0}},4]
In[]:=
Out[]=
WolframModelExplorer1Binary[Table[First@RandomWolframModelRuleMulti[{{{{2,2}}{{4,2}},4},{{{2,2}}{{1,2}},3}}],20],{{0,0},{0,0}},4]
In[]:=
Rule::argr:Rule called with 1 argument; 2 arguments are expected.
(kernel 11)
Rule::argr:Rule called with 1 argument; 2 arguments are expected.
(kernel 1)
Rule::argrx:Rule called with 0 arguments; 2 arguments are expected.
(kernel 11)
Rule::argr:Rule called with 1 argument; 2 arguments are expected.
(kernel 1)
Rule::argr:Rule called with 1 argument; 2 arguments are expected.
(kernel 1)
General::stop:Further output of Rule::argr will be suppressed during this calculation.
(kernel 1)
Rule
:Rule called with 1 argument; 2 arguments are expected.
Rule
:Rule called with 0 arguments; 2 arguments are expected.
Rule
:Rule called with 1 argument; 2 arguments are expected.
Rule
:Rule called with 1 argument; 2 arguments are expected.
General
:Further output of Rule::argr will be suppressed during this calculation.
Out[]=
WolframModelExplorer1Binary[{{{{1,2},{2,3}}{{1,2},{2,2},{3,4},{4,3}},{{1,1},{1,2}}{{3,1}}},{{{1,2},{2,3}}{{1,3},{1,4},{2,4},{4,3}},{{1,1},{2,3}}{{2,3}}},{{{1,1},{2,3}}{{2,1},{2,3},{3,2},{3,4}},{{1,1},{1,2}}{{3,2}}},{{{1,1},{2,3}}{{2,1},{2,2},{4,1},{4,3}},{{1,1},{2,3}}{{1,2}}}},{{0,0},{0,0}},10]
In[]:=
Out[]=
WolframModelExplorer1Binary[{{{{1,1},{2,3}}{{2,1},{2,2},{4,1},{4,3}},{{1,1},{2,3}}{{1,2}}}},{{0,0},{0,0}},40]
In[]:=
Out[]=
WolframModel[{{{1,1},{2,3}}{{2,1},{2,2},{4,1},{4,3}},{{1,1},{2,3}}{{1,2}}},{{0,0},{0,0}},40]
In[]:=
Out[]=
WolframModel[{{{1,1},{2,3}}{{2,1},{2,2},{4,1},{4,3}},{{1,1},{2,3}}{{1,2}}},{{0,0},{0,0}},100]
In[]:=
Out[]=
Graph[Rule@@@%["FinalState"]]
In[]:=
Out[]=
WolframModel[{{{1,1},{2,3}}{{2,1},{2,2},{4,1},{4,3}}},{{0,0},{0,0}},10]
In[]:=
Out[]=
​
WolframModel[{{{1,1},{2,3}}{{2,1},{2,2},{4,1},{4,3}},{{1,1},{2,3}}{{1,2}}},{{0,0},{0,0}},10]
In[]:=
Out[]=
RulePlot[WolframModel[{{{1,1},{2,3}}{{2,1},{2,2},{4,1},{4,3}}}]]
In[]:=
Out[]=
WolframModelExplorer1Binary[Table[First@RandomWolframModelRuleMulti[{{{{2,2}}{{4,2}},4},{{{2,2}}{{1,2}},3}}],20],{{0,0},{0,0}},4]
In[]:=
Rule::argr:Rule called with 1 argument; 2 arguments are expected.
(kernel 6)
Rule::argr:Rule called with 1 argument; 2 arguments are expected.
(kernel 6)
Rule::argr:Rule called with 1 argument; 2 arguments are expected.
(kernel 6)
General::stop:Further output of Rule::argr will be suppressed during this calculation.
(kernel 6)
Rule
:Rule called with 1 argument; 2 arguments are expected.
Rule
:Rule called with 1 argument; 2 arguments are expected.
Rule
:Rule called with 1 argument; 2 arguments are expected.
General
:Further output of Rule::argr will be suppressed during this calculation.
Out[]=
WolframModelExplorer1Binary[{{{{1,2},{3,2}}{{3,3},{4,1},{4,2},{4,3}},{{1,2},{3,2}}{{1,3}}},{{{1,1},{2,3}}{{2,1},{2,2},{2,3},{4,2}},{{1,2},{1,2}}{{3,2}}}},{{0,0},{0,0}},10]
In[]:=
Out[]=
​
WolframModel[{{{1,2},{3,2}}{{3,3},{4,1},{4,2},{4,3}},{{1,2},{3,2}}{{1,3}}},{{0,0},{0,0}},10]
In[]:=
Out[]=
Graph[Rule@@@%["FinalState"]]
In[]:=
Out[]=
WolframModel[{{{1,2},{3,2}}{{3,3},{4,1},{4,2},{4,3}}},{{0,0},{0,0}},10]
In[]:=
Out[]=
Graph[Rule@@@%["FinalState"]]
In[]:=
Out[]=
HypergraphPlot[WolframModel[{{{1,1},{2,3}}{{2,1},{2,2},{2,3},{4,2}},{{1,2},{1,2}}{{3,2}}},{{0,0},{0,0}},15,"FinalState"]]
In[]:=
Out[]=
Length/@WolframModel[{{{1,1},{2,3}}{{2,1},{2,2},{2,3},{4,2}},{{1,2},{1,2}}{{3,2}}},{{0,0},{0,0}},15,"StatesList"]
In[]:=
{2,4,8,14,26,37,49,61,74,86,100,113,126,139,151,165}
Out[]=
Length/@WolframModel[{{{1,1},{2,3}}{{2,1},{2,2},{2,3},{4,2}},{{1,2},{1,2}}{{3,2}}},{{0,0},{0,0}},15,"CausalGraph"]
In[]:=
Out[]=
HypergraphPlot[WolframModel[{{{1,1},{2,3}}{{2,1},{2,2},{2,3},{4,2}}},{{0,0},{0,0}},15,"FinalState"]]
In[]:=
Out[]=
Length/@WolframModel[{{{1,1},{2,3}}{{2,1},{2,2},{2,3},{4,2}}},{{0,0},{0,0}},15,"StatesList"]
In[]:=
{2,4,8,14,26,40,56,72,88,106,124,142,160,182,204,226}
Out[]=
WolframModel[{{{1,1},{2,3}}{{2,1},{2,2},{2,3},{4,2}}},{{0,0},{0,0}},15,"CausalGraph"]
In[]:=
Out[]=
LayeredGraphPlot[%%]
In[]:=
Out[]=
Graph3D[%]
In[]:=
Out[]=
HypergraphPlot[WolframModel[{{{1,1},{2,3}}{{2,1},{2,2},{2,3},{4,2}}},{{0,0}},15,"FinalState"]]
In[]:=
%["FinalState"]
In[]:=
Out[]=
WolframModelExplorer1Binary[Table[First@RandomWolframModelRuleMulti[{{{{2,2}}{{4,2}},4},{{{2,2}}{{1,2}},3}}],20],{{0,0},{0,0}},4]
In[]:=
Out[]=
{{{{1,2},{3,2}}{{2,1},{3,4},{4,2},{4,3}},{{1,1},{1,2}}{{2,1}}},{{{1,2},{1,3}}{{3,4},{4,1},{4,2},{4,2}},{{1,1},{2,1}}{{2,3}}},{{{1,2},{1,3}}{{1,3},{1,4},{2,4},{3,4}},{{1,1},{2,3}}{{1,1}}}};
In[]:=
WolframModelExplorer1Binary[%,{{0,0},{0,0}},10]
In[]:=
Out[]=
WolframModelExplorer1Binary[%288,{{0,0},{0,0}},8]
In[]:=
Out[]=
First/@%288
In[]:=
Out[]=
WolframModelExplorer1Binary[%,{{0,0},{0,0}},8]
In[]:=
Out[]=
WolframModelExplorer1Binary[Most[%291],{{0,0},{0,0}},12]
In[]:=
Out[]=
Graph3D

In[]:=
WolframModel[{{1,2},{1,3}}{{1,3},{1,4},{2,4},{3,4}},{{0,0},{0,0}},14]
In[]:=
Out[]=
Graph[Rule@@@%["FinalState"]]
In[]:=
Out[]=
GraphPlot[%]
In[]:=
Out[]=
RulePlot[WolframModel[{{1,2},{1,3}}{{1,3},{1,4},{2,4},{3,4}}]]
In[]:=
Out[]=
First[%288]
In[]:=
{{{1,2},{3,2}}{{2,1},{3,4},{4,2},{4,3}},{{1,1},{1,2}}{{2,1}}}
Out[]=
WolframModelExplorer1Binary[{{{{1,2},{3,2}}{{2,1},{3,4},{4,2},{4,3}},{{1,1},{1,2}}{{2,1}}}},{{0,0},{0,0}},12]
In[]:=
Out[]=
WolframModelExplorer1Binary[Table[First@RandomWolframModelRuleMulti[{{{{2,2}}{{4,2}},4},{{{2,2}}{{1,2}},3}}],20],{{0,0},{0,0}},4]
In[]:=
Out[]=
{{{{1,2},{2,3}}{{2,1},{2,4},{3,2},{4,4}},{{1,1},{1,2}}{{3,1}}}}
In[]:=
{{{{1,2},{2,3}}{{2,1},{2,4},{3,2},{4,4}},{{1,1},{1,2}}{{3,1}}}}
Out[]=
WolframModelExplorer1Binary[%,{{0,0},{0,0}},8]
In[]:=
Out[]=
{{{{1,2},{2,3}}{{2,1},{2,4},{3,2},{4,4}},{{1,1},{1,2}}{{3,1}}},{{{1,2},{1,3}}{{1,4},{2,4},{3,3},{4,1}},{{1,2},{2,1}}{{3,2}}},{{{1,2},{1,3}}{{1,1},{1,4},{2,4},{3,1}},{{1,1},{1,2}}{{1,1}}}};
In[]:=
WolframModelExplorer1Binary[%,{{0,0},{0,0}},8]
In[]:=
Out[]=
WolframModelExplorer1Binary[Table[First@RandomWolframModelRuleMulti[{{{{2,2}}{{4,2}},4},{{{2,2}}{{1,2}},3}}],20],{{0,0},{0,0}},4]
In[]:=
Out[]=
WolframModelExplorer1Binary[Table[First@RandomWolframModelRuleMulti[{{{{2,2}}{{4,2}},4},{{{2,2}}{{1,2}},3}}],20],{{0,0},{0,0}},4]
In[]:=
Out[]=
{{{{1,2},{2,3}}{{1,4},{3,2},{4,2},{4,3}},{{1,1},{1,1}}{{2,2}}},{{{1,2},{2,3}}{{1,3},{1,4},{2,4},{4,1}},{{1,2},{3,2}}{{1,2}}},{{{1,1},{2,3}}{{1,2},{2,4},{3,4},{4,3}},{{1,1},{1,2}}{{2,3}}}};
In[]:=
WolframModelExplorer1Binary[%,{{0,0},{0,0}},8]
In[]:=
Out[]=
WolframModelExplorer1Binary[First/@%312,{{0,0},{0,0}},8]
In[]:=
Out[]=
WolframModelExplorer1Binary[%,{{0,0},{0,0}},8]