EnumerateWolframModelRules[{{2,2}}{{3,2}},2]
In[]:=
Out[]=
WolframModelExplorer1[%,Automatic,4]
In[]:=
Out[]=
WolframModelExplorer1[%152,{{0,1},{0,0}},3]
In[]:=
Out[]=
WolframModelExplorer1[%152,{{0,1},{0,0}},3]
WolframModelExplorer1[Table[RandomWolframModelRule[{{2,2}}{{3,2}},3],20],Automatic,4]
In[]:=
Out[]=
WolframModelExplorer1[Table[RandomWolframModelRule[{{2,2}}{{3,2}},4],20],Automatic,4]
In[]:=
Out[]=
WolframModelExplorer1[Table[RandomWolframModelRule[{{2,2}}{{3,2}},5],20],Automatic,4]
In[]:=
Out[]=
WolframModelExplorer1[{{{1,2},{2,3}}{{1,3},{3,4},{4,2}},{{1,1},{2,3}}{{2,3},{4,2},{4,4}}},Automatic,30]
In[]:=
Out[]=
WolframModelExplorer1[{{{1,2},{2,3}}{{1,3},{3,4},{4,2}},{{1,1},{2,3}}{{2,3},{4,2},{4,4}}},Automatic,12]
In[]:=
Out[]=
FindSequenceFunction[{2,3,4,6,8,12,17,24,35,51,72,105,153}]
In[]:=
FindSequenceFunction[{2,3,4,6,8,12,17,24,35,51,72,105,153}]
Out[]=
WolframModelExplorer1[{{{1,2},{2,3}}{{1,3},{3,4},{4,2}},{{1,1},{2,3}}{{2,3},{4,2},{4,4}}},Automatic,15]
In[]:=
Out[]=
Ratios[{2,3,4,6,8,12,17,24,35,51,72,105,153,216,315,459}]//N
In[]:=
{1.5,1.33333,1.5,1.33333,1.5,1.41667,1.41176,1.45833,1.45714,1.41176,1.45833,1.45714,1.41176,1.45833,1.45714}
Out[]=
WolframModelExplorer1[Table[RandomWolframModelRule[{{2,2}}{{3,2}},5],20],Automatic,4]
In[]:=
Out[]=
WolframModelExplorer1[Table[RandomWolframModelRule[{{2,2}}{{3,2}},4],20],Automatic,4]
In[]:=
Out[]=
WolframModelExplorer1[{{{1,2},{2,3}}{{2,1},{3,4},{4,1}},{{1,2},{2,3}}{{1,1},{3,1},{4,1}}},Automatic,6]
In[]:=
Out[]=
WolframModelExplorer1[{{{1,2},{2,3}}{{2,1},{3,4},{4,1}},{{1,2},{2,3}}{{1,1},{3,1},{4,1}}},Automatic,15]
In[]:=
Out[]=
WolframModelExplorer1[Table[RandomWolframModelRule[{{3,2}}{{4,2}},5],20],Automatic,4]
In[]:=
Out[]=
WolframModelExplorer1[Table[RandomWolframModelRule[{{3,2}}{{5,2}},5],20],Automatic,4]
In[]:=
Out[]=
WolframModelExplorer1[{{{1,2},{1,3},{2,1}}{{1,1},{2,1},{2,4},{3,4},{4,3}},{{1,1},{2,1},{2,3}}{{2,1},{2,2},{4,1},{4,2},{4,3}},{{1,2},{1,3},{2,3}}{{1,3},{2,4},{3,3},{4,2},{4,3}},{{1,1},{2,1},{3,4}}{{1,2},{4,1},{4,4},{5,1},{5,2}},{{1,1},{2,3},{3,4}}{{1,5},{2,4},{2,4},{4,4},{4,4}},{{1,1},{2,3},{3,4}}{{2,1},{3,1},{4,4},{5,2},{5,3}}},Automatic,10]
In[]:=
Out[]=
WolframModelExplorer1[{{{1,2},{1,3},{2,1}}{{1,1},{2,1},{2,4},{3,4},{4,3}},{{1,1},{2,1},{2,3}}{{2,1},{2,2},{4,1},{4,2},{4,3}},{{1,1},{2,3},{3,4}}{{2,1},{3,1},{4,4},{5,2},{5,3}}},Automatic,20]
In[]:=
Out[]=
Ratios[{3,5,7,9,13,19,25,33,41,51,61,73,89,107,129,151,179,209,241,275,311}]//N
In[]:=
{1.66667,1.4,1.28571,1.44444,1.46154,1.31579,1.32,1.24242,1.2439,1.19608,1.19672,1.21918,1.20225,1.20561,1.17054,1.18543,1.1676,1.15311,1.14108,1.13091}
Out[]=
Differences[{3,5,7,9,13,19,25,33,41,51,61,73,89,107,129,151,179,209,241,275,311}]
In[]:=
{2,2,2,4,6,6,8,8,10,10,12,16,18,22,22,28,30,32,34,36}
Out[]=
Differences[%]
In[]:=
{0,0,2,2,0,2,0,2,0,2,4,2,4,0,6,2,2,2,2}
Out[]=
WolframModelExplorer1[{{{1,2},{1,3},{2,1}}{{1,1},{2,1},{2,4},{3,4},{4,3}},{{1,1},{2,1},{2,3}}{{2,1},{2,2},{4,1},{4,2},{4,3}},{{1,2},{1,3},{2,3}}{{1,3},{2,4},{3,3},{4,2},{4,3}},{{1,1},{2,1},{3,4}}{{1,2},{4,1},{4,4},{5,1},{5,2}},{{1,1},{2,3},{3,4}}{{1,5},{2,4},{2,4},{4,4},{4,4}},{{1,1},{2,3},{3,4}}{{2,1},{3,1},{4,4},{5,2},{5,3}}},Automatic,9]
In[]:=
Out[]=
CellPrint[ExpressionCell[{#,Automatic,9},"Input"]]&/@{{{1,1},{2,1},{3,4}}{{1,2},{4,1},{4,4},{5,1},{5,2}},{{1,1},{2,3},{3,4}}{{1,5},{2,4},{2,4},{4,4},{4,4}}}
In[]:=
{{{1,1},{2,1},{3,4}}{{1,2},{4,1},{4,4},{5,1},{5,2}},Automatic,9}
{{{1,1},{2,3},{3,4}}{{1,5},{2,4},{2,4},{4,4},{4,4}},Automatic,9}
{Null,Null}
Out[]=
RulePlot[WolframModel[{{1,2},{1,3},{2,1}}{{1,1},{2,1},{2,4},{3,4},{4,3}}]]
In[]:=
Out[]=
WolframModel[{{1,2},{1,3},{2,1}}{{1,1},{2,1},{2,4},{3,4},{4,3}},Table[0,3,2],30]
In[]:=
Out[]=
Graph[Rule@@@%["FinalState"]]
In[]:=
Out[]=
WolframModel[{{1,2},{1,3},{2,1}}{{1,1},{2,1},{2,4},{3,4},{4,3}},Table[0,3,2],40]
In[]:=
Out[]=
Graph[Rule@@@%["FinalState"]]
In[]:=
Out[]=
WolframModelExplorer1[Table[RandomWolframModelRule[{{3,2}}{{5,2}},5],20],Automatic,4]
In[]:=
Out[]=
WolframModelExplorer1[{{{1,1},{2,1},{3,4}}{{1,3},{4,2},{5,3},{5,4},{5,5}},{{1,1},{2,3},{2,4}}{{1,5},{3,1},{3,3},{4,1},{5,2}},{{1,2},{1,3},{2,4}}{{1,3},{1,5},{2,4},{2,5},{4,5}}},Automatic,10]
In[]:=
Out[]=
WolframModel[{{1,2},{1,3},{2,4}}{{1,3},{1,5},{2,4},{2,5},{4,5}},Table[0,3,2],20]
In[]:=
Out[]=
Graph[Rule@@@%["FinalState"]]
In[]:=
Out[]=
Graph3D[%]
In[]:=
Out[]=
%201["CausalGraph"]
In[]:=
Out[]=
WolframModelExplorer1[Table[RandomWolframModelRule[{{3,2}}{{5,2}},4],20],Automatic,4]
In[]:=
Out[]=
WolframModelExplorer1[{{{1,2},{1,2},{2,3}}{{1,4},{2,2},{3,2},{3,3},{4,3}},{{1,2},{2,1},{3,1}}{{1,4},{2,3},{3,4},{3,4},{4,3}}},Automatic,50]
In[]:=
Out[]=
Graph[Rule@@@WolframModel[{{1,2},{2,1},{3,1}}{{1,4},{2,3},{3,4},{3,4},{4,3}},Table[0,3,2],200,"FinalState"]]
In[]:=
Out[]=
Graph3D[%]
In[]:=
Out[]=
Differences[{3,5,7,11,15,19,23,27,31,35,39,43,47,51,55,59,63,67,71,75,79,83,87,91,95,99,103,107,111,115,119,123,127,131,135,139,143,147,151,155,159,163,167,171,175,179,183,187,191,195,199}]
In[]:=
{2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
Out[]=
RulePlot[WolframModel[{{1,2},{2,1},{3,1}}{{1,4},{2,3},{3,4},{3,4},{4,3}}]]
In[]:=
Out[]=
WolframModelExplorer1[Table[RandomWolframModelRule[{{3,2}}{{5,2}},4],20],Automatic,5]
In[]:=
Out[]=
WolframModelExplorer1[Table[RandomWolframModelRule[{{3,2}}{{5,2}},4],20],Automatic,5]
In[]:=
Out[]=
WolframModelExplorer1[Table[RandomWolframModelRule[{{3,2}}{{5,2}},4],20],Automatic,5]
In[]:=
Out[]=
WolframModelExplorer1[Table[RandomWolframModelRule[{{3,2}}{{5,2}},4],20],Automatic,5]
In[]:=
Out[]=
WolframModelExplorer1[{{{1,1},{1,2},{3,1}}{{1,3},{1,4},{2,4},{3,2},{4,4}},{{1,1},{2,1},{2,3}}{{2,4},{2,4},{3,4},{4,3},{4,4}}},Automatic,20]
In[]:=
Out[]=
WolframModelExplorer1[Table[RandomWolframModelRule[{{3,2}}{{5,2}},5],20],Automatic,5]
In[]:=
Out[]=
{{{1,2},{2,1},{3,4}}{{1,3},{1,4},{3,5},{5,3},{5,4}},{{1,2},{2,3},{3,4}}{{4,1},{4,4},{4,4},{5,1},{5,3}},{{1,1},{2,3},{3,4}}{{2,1},{4,1},{4,1},{5,1},{5,5}}};
In[]:=
WolframModelExplorer1[%,Automatic,10]
In[]:=
Out[]=
Both these are disconnected....
WolframModelExplorer1[%%,Automatic,8]
In[]:=
Out[]=
WolframModelExplorer1[Table[RandomWolframModelRule[{{3,2}}{{5,2}},5],20],Automatic,5]
In[]:=
Out[]=
{{{1,2},{1,3},{2,4}}{{1,4},{3,1},{4,5},{5,2},{5,4}},{{1,2},{1,3},{2,4}}{{1,4},{1,5},{2,4},{5,4},{5,5}}}