WOLFRAM NOTEBOOK

Sierpinski and friends

In[]:=
HypergraphPlot/@WolframModel[{{1,2,3}}{{5,6,1},{6,4,2},{4,5,3}},{{0,0,0}},4,"StatesList"]
Out[]=
In[]:=
RulePlot[WolframModel[{{1,2,3}}{{5,6,1},{6,4,2},{4,5,3}}]]
Out[]=
In[]:=
HypergraphPlot[WolframModel[{{1,2,3}}{{5,6,1},{6,4,2},{4,5,3}},{{0,0,0}},6,"FinalState"]]
Out[]=
Permuting the elements:
In[]:=
HypergraphPlot/@WolframModel[{{1,2,3}}{{5,6,1},{2,4,6},{4,3,5}},{{0,0,0}},3,"StatesList"]
Out[]=
In[]:=
HypergraphPlot/@WolframModel[{{1,2,3}}Sort/@{{5,6,1},{2,4,6},{4,3,5}},{{0,0,0}},3,"StatesList"]
Out[]=
In[]:=
RulePlot[WolframModel[{{1,2,3}}Sort/@{{5,6,1},{2,4,6},{4,3,5}}]]
Out[]=

Ordinary graph

In[]:=
HypergraphPlot/@WolframModel[{{1,1}}{{1,2},{2,2},{2,2}},{{0,0}},5,"StatesList"]
Out[]=
In[]:=
RulePlot[WolframModel[{{1,1}}{{1,2},{2,2},{2,2}}]]
Out[]=

Minimum tree case

In[]:=
HypergraphPlot/@WolframModel[{{1}}{{1,2},{2},{2}},{{0}},5,"StatesList"]
Out[]=
In[]:=
RulePlot[WolframModel[{{1}}{{1,2},{2},{2}}]]
Out[]=

Lines & Circles

Random {1,3}->{3,3}

Things are always nested when there’s only one edge on the LHS : analog of neighbor independent SS’s

Wolfram Cloud

You are using a browser not supported by the Wolfram Cloud

Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.


I understand and wish to continue anyway »

You are using a browser not supported by the Wolfram Cloud. Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.