Sierpinski and friends

HypergraphPlot/@WolframModel[{{1,2,3}}{{5,6,1},{6,4,2},{4,5,3}},{{0,0,0}},4,"StatesList"]
In[]:=
Out[]=
RulePlot[WolframModel[{{1,2,3}}{{5,6,1},{6,4,2},{4,5,3}}]]
In[]:=
Out[]=
HypergraphPlot[WolframModel[{{1,2,3}}{{5,6,1},{6,4,2},{4,5,3}},{{0,0,0}},6,"FinalState"]]
In[]:=
Out[]=
Permuting the elements:
HypergraphPlot/@WolframModel[{{1,2,3}}{{5,6,1},{2,4,6},{4,3,5}},{{0,0,0}},3,"StatesList"]
In[]:=
Out[]=
HypergraphPlot/@WolframModel[{{1,2,3}}Sort/@{{5,6,1},{2,4,6},{4,3,5}},{{0,0,0}},3,"StatesList"]
In[]:=
Out[]=
RulePlot[WolframModel[{{1,2,3}}Sort/@{{5,6,1},{2,4,6},{4,3,5}}]]
In[]:=
Out[]=

Ordinary graph

HypergraphPlot/@WolframModel[{{1,1}}{{1,2},{2,2},{2,2}},{{0,0}},5,"StatesList"]
In[]:=
Out[]=
RulePlot[WolframModel[{{1,1}}{{1,2},{2,2},{2,2}}]]
In[]:=
Out[]=

Minimum tree case

HypergraphPlot/@WolframModel[{{1}}{{1,2},{2},{2}},{{0}},5,"StatesList"]
In[]:=
Out[]=
RulePlot[WolframModel[{{1}}{{1,2},{2},{2}}]]
In[]:=
Out[]=
HypergraphPlot/@WolframModel[{{1}}{{1,2},{1},{2}},{{0}},6,"StatesList"]
In[]:=
Out[]=
HypergraphPlot/@WolframModel[{{1}}{{1,2},{1},{1}},{{0}},6,"StatesList"]
In[]:=
Out[]=

Lines & Circles

HypergraphPlot/@WolframModel[{{1}}{{1,2},{2}},{{0}},6,"StatesList"]
In[]:=
Out[]=
HypergraphPlot/@WolframModel[{{1,2}}{{1,3},{3,2}},{{0,0}},6,"StatesList"]
In[]:=
Out[]=
RulePlot[WolframModel[{{1,2}}{{1,3},{3,2}}]]
In[]:=
Out[]=
WolframModel[{{1,2}}{{1,3},{3,2}},{{0,0}},6,"CausalGraph"]
In[]:=
Out[]=

Random {1,3}->{3,3}

​
Table[RandomWolframModelRule[{{1,3}}{{3,3}},4],20]
In[]:=
Out[]=
ParallelMapMonitored[Labeled[WolframModelTester1[#,Automatic,3],#]&,%]
In[]:=
Out[]=
HypergraphPlot/@WolframModel[{{1,2,2}}{{1,1,3},{2,4,3},{2,4,4}},{{0,0,0}},8,"StatesList"]
In[]:=
Out[]=
HypergraphPlot/@WolframModel[{{1,2,3}}{{1,2,3},{1,4,1},{2,4,2}},{{0,0,0}},6,"StatesList"]
In[]:=
Out[]=
HypergraphPlot[WolframModel[{{1,2,3}}{{1,2,3},{1,4,1},{2,4,2}},{{0,0,0}},6,"FinalState"],GraphLayout->"SpringElectricalEmbedding"]
In[]:=
Out[]=
​
RulePlot[WolframModel[{{1,2,3}}{{1,2,3},{1,4,1},{2,4,2}}]]
In[]:=
Out[]=
RulePlot[WolframModel[{{1,2,3}}{{1,2,3},{1,4,1},{2,4,2}}],VertexLabelsAutomatic]
In[]:=
Out[]=
Graph[Rule@@@Catenate[Partition[#,2,1]&/@WolframModel[{{1,2,3}}{{1,2,3},{1,4,1},{2,4,2}},{{0,0,0}},6,"FinalState"]]]
In[]:=
Out[]=
GraphPlot3D[%]
In[]:=
Length/@WolframModel[{{1,2,3}}{{1,2,3},{1,4,1},{2,4,2}},{{0,0,0}},8,"StatesList"]
In[]:=
{1,3,9,27,81,243,729,2187,6561}
Out[]=
Log[3,%]
In[]:=
{0,1,2,3,4,5,6,7,8}
Out[]=
WolframModel[{{1,2,3}}{{1,2,3},{1,4,1},{2,4,2}},{{0,0,0}},5,"CausalGraph"]
In[]:=
Out[]=

Things are always nested when there’s only one edge on the LHS : analog of neighbor independent SS’s