{{3,3}}{{7,3}},5

Select[Union[Table[RandomWolframModelRule[{{3,3}}{{7,3}},5],50]],NewVerticesQ]
In[]:=
Out[]=
ParallelMapMonitored[SafeHyperModelTestButton[#,10,4]&,%]
In[]:=
Out[]=
SafeModelTest[{{1,2,2},{2,3,4},{3,1,4}}{{1,1,4},{1,3,3},{2,4,5},{4,1,3},{4,5,3},{5,3,1},{5,4,1}},15,10]
In[]:=
Out[]=
SafeModelCount[{{1,2,2},{2,3,4},{3,1,4}}{{1,1,4},{1,3,3},{2,4,5},{4,1,3},{4,5,3},{5,3,1},{5,4,1}},15,10]
In[]:=
{3,7,11,19,31,43,63,83,107,135,171,211,267,331,419,523}
Out[]=
FindSequenceFunction[%]
In[]:=
FindSequenceFunction[{3,7,11,19,31,43,63,83,107,135,171,211,267,331,419,523}]
Out[]=
Differences[%92]
In[]:=
{4,4,8,12,12,20,20,24,28,36,40,56,64,88,104}
Out[]=
Differences[%]
In[]:=
{0,4,4,0,8,0,4,4,8,4,16,8,24,16}
Out[]=
SafeModelCount[{{1,2,2},{2,3,4},{3,1,4}}{{1,1,4},{1,3,3},{2,4,5},{4,1,3},{4,5,3},{5,3,1},{5,4,1}},25,10]
In[]:=
{3,7,11,19,31,43,63,83,107,135,171,211,267,331,419,523,639,799,1007,1263,1579,1983,2495,3143,3963,4959}
Out[]=
NestList[Differences,%,3]
In[]:=
Out[]=
WolframModel[{{1,2,2},{2,3,4},{3,1,4}}{{1,1,4},{1,3,3},{2,4,5},{4,1,3},{4,5,3},{5,3,1},{5,4,1}},Table[0,3,3],20,"CausalGraph"]
In[]:=
Out[]=
LayeredGraphPlot[%]
In[]:=
Out[]=
Graphics3D[Point[WolframModel[{{1,2,2},{2,3,4},{3,1,4}}{{1,1,4},{1,3,3},{2,4,5},{4,1,3},{4,5,3},{5,3,1},{5,4,1}},Table[0,3,3],20,"FinalState"]]]
In[]:=
Out[]=
RulePlot[WolframModel[{{1,2,2},{2,3,4},{3,1,4}}{{1,1,4},{1,3,3},{2,4,5},{4,1,3},{4,5,3},{5,3,1},{5,4,1}}]]
In[]:=
Out[]=

Another rule

{{1,2,1},{2,3,4},{4,2,3}}{{1,3,2},{2,2,5},{2,5,5},{4,3,3},{4,5,2},{5,1,3},{5,5,5}}
SafeModelTest[{{1,2,1},{2,3,4},{4,2,3}}{{1,3,2},{2,2,5},{2,5,5},{4,3,3},{4,5,2},{5,1,3},{5,5,5}},15,10]
In[]:=
Out[]=
SafeModelCount[{{1,2,1},{2,3,4},{4,2,3}}{{1,3,2},{2,2,5},{2,5,5},{4,3,3},{4,5,2},{5,1,3},{5,5,5}},15,10]
In[]:=
{3,7,11,19,27,35,39}
Out[]=

{{3,2}}{{7,2}},5

Select[Union[Table[RandomWolframModelRule[{{3,2}}{{7,2}},5],50]],NewVerticesQ]
In[]:=
Out[]=
ParallelMapMonitored[SafeHyperModelTestButton[#,10,4]&,%]
In[]:=
Out[]=
WolframModel[{{1,2},{1,3},{2,1}}{{1,3},{1,4},{3,2},{3,5},{3,5},{5,1},{5,3}},Table[0,3,2],20]
In[]:=
Out[]=
Length/@%["StatesList"]
In[]:=
{3,7,15,31,51,75,99,127,155,183,211,239,267,299,331,363,395,427,459,491,523}
Out[]=
Differences[%]
In[]:=
{4,8,16,20,24,24,28,28,28,28,28,28,32,32,32,32,32,32,32,32}
Out[]=
RulePlot[WolframModel[{{1,2},{1,3},{2,1}}{{1,3},{1,4},{3,2},{3,5},{3,5},{5,1},{5,3}}]]
In[]:=
Out[]=
GraphPlot[Rule@@@%108["FinalState"]]
In[]:=
Out[]=
Graph[Rule@@@WolframModel[{{1,2},{1,3},{2,1}}{{1,3},{1,4},{3,2},{3,5},{3,5},{5,1},{5,3}},Table[0,3,2],30,"FinalState"]]
In[]:=
Out[]=
Graph3D[%]
In[]:=
Out[]=
WolframModel[{{1,2},{1,3},{2,1}}{{1,3},{1,4},{3,2},{3,5},{3,5},{5,1},{5,3}},Table[0,3,2],50]
In[]:=
Out[]=
Length/@%["StatesList"]
In[]:=
{3,7,15,31,51,75,99,127,155,183,211,239,267,299,331,363,395,427,459,491,523,559,595,631,667,703,739,775,811,847,883,919,955,991,1027,1063,1099,1135,1171,1207,1243,1279,1315,1351,1387,1423,1459,1495,1531,1567,1603}
Out[]=
Differences[%]
In[]:=
{4,8,16,20,24,24,28,28,28,28,28,28,32,32,32,32,32,32,32,32,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36}
Out[]=
Split[%]
In[]:=
{{4},{8},{16},{20},{24,24},{28,28,28,28,28,28},{32,32,32,32,32,32,32,32},{36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36}}
Out[]=
Length/@%
In[]:=
{1,1,1,1,2,6,8,30}
Out[]=
e100=WolframModel[{{1,2},{1,3},{2,1}}{{1,3},{1,4},{3,2},{3,5},{3,5},{5,1},{5,3}},Table[0,3,2],100]
In[]:=
Out[]=
Differences[Length/@e100["StatesList"]]
In[]:=
{4,8,16,20,24,24,28,28,28,28,28,28,32,32,32,32,32,32,32,32,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,40,40,40,40,40,40,40,40}
Out[]=
Length/@Split[%]
In[]:=
{1,1,1,1,2,6,8,72,8}
Out[]=
FindSequenceFunction[{1,2,6,8,72}]
In[]:=
FindSequenceFunction[{1,2,6,8,72}]
Out[]=
GraphPlot[Rule@@@e100["FinalState"]]
In[]:=
Out[]=
GraphPlot3D[Rule@@@e100["FinalState"],PlotTheme"LargeGraph"]
In[]:=
Out[]=

Another rule

WolframModel[{{1,2},{1,2},{2,3}}{{1,4},{2,4},{3,1},{3,3},{3,4},{5,2},{5,4}},Table[0,3,2],20]
In[]:=
Out[]=
​
WolframModel[{{1,1},{2,1},{3,2}}{{1,3},{2,1},{2,3},{3,4},{4,4},{5,2},{5,4}},Table[0,3,2],20]
In[]:=
Out[]=
Graph[Rule@@@%["FinalState"]]
In[]:=
Out[]=
​
Graph[Rule@@@WolframModel[{{1,1},{2,1},{3,2}}{{1,3},{2,1},{2,3},{3,4},{4,4},{5,2},{5,4}},Table[0,3,2],40,"FinalState"]]
In[]:=
Out[]=
GraphPlot3D[Rule@@@WolframModel[{{1,1},{2,1},{3,2}}{{1,3},{2,1},{2,3},{3,4},{4,4},{5,2},{5,4}},Table[0,3,2],40,"FinalState"]]
In[]:=
Out[]=
WolframModel[{{1,1},{2,1},{3,2}}{{1,3},{2,1},{2,3},{3,4},{4,4},{5,2},{5,4}},Table[0,3,2],40,"CausalGraph"]
In[]:=
Out[]=