Union[Table[RandomWolframModelRule[{{2,3}}{{4,3}},3],50]]
In[]:=
Out[]=
ParallelMapMonitored[SafeHyperModelTestButton[#,10,4]&,%36]
In[]:=
Out[]=
RulePlot[WolframModel[{{1,1,2},{1,2,3}}{{1,3,3},{2,2,2},{3,1,1},{3,1,2}}]]
In[]:=
Out[]=
WolframModel[{{1,1,2},{1,2,3}}{{1,3,3},{2,2,2},{3,1,1},{3,1,2}},Table[0,2,3],8]
In[]:=
Out[]=
HypergraphPlot[%["FinalState"]]
In[]:=
Select[%36,NewVerticesQ]
In[]:=
Out[]=
ParallelMapMonitored[SafeHyperModelTestButton[#,10,4]&,%]
In[]:=
Out[]=
SafeModelTest[{{1,1,2},{2,1,1}}{{1,1,1},{2,2,3},{3,1,2},{3,3,2}},25,10]
In[]:=
Out[]=
{{2,3}}{{7,3}},3
{{2,3}}{{7,3}},3
Select[Union[Table[RandomWolframModelRule[{{2,3}}{{7,3}},3],50]],NewVerticesQ]
In[]:=
Out[]=
ParallelMapMonitored[SafeHyperModelTestButton[#,10,4]&,%]
In[]:=
Out[]=
{{1,2,1},{2,1,1}}{{1,1,1},{1,1,2},{2,1,2},{2,1,3},{2,2,2},{2,3,2},{3,1,2}}
SafeModelTest[{{1,2,1},{2,1,1}}{{1,1,1},{1,1,2},{2,1,2},{2,1,3},{2,2,2},{2,3,2},{3,1,2}},6,10]
In[]:=
Out[]=
SafeModelTest[{{1,2,1},{2,1,1}}{{1,1,1},{1,1,2},{2,1,2},{2,1,3},{2,2,2},{2,3,2},{3,1,2}},3,10]
In[]:=
Out[]=
SafeModelTest[{{1,2,1},{2,1,1}}{{1,1,1},{1,1,2},{2,1,2},{2,1,3},{2,2,2},{2,3,2},{3,1,2}},4,10]
In[]:=
Out[]=
RulePlot[WolframModel[{{1,2,1},{2,1,1}}{{1,1,1},{1,1,2},{2,1,2},{2,1,3},{2,2,2},{2,3,2},{3,1,2}}]]
In[]:=
Out[]=
SafeModelCount[{{1,2,1},{2,1,1}}{{1,1,1},{1,1,2},{2,1,2},{2,1,3},{2,2,2},{2,3,2},{3,1,2}},7,10]
In[]:=
{2,7,22,52,117,262,587,1312}
Out[]=
FindSequenceFunction[%]
In[]:=
FindSequenceFunction[{2,7,22,52,117,262,587,1312}]
Out[]=
Ratios[%%]//N
In[]:=
{3.5,3.14286,2.36364,2.25,2.23932,2.24046,2.23509}
Out[]=
DeleteCases[WolframModel[{{1,2,1},{2,1,1}}{{1,1,1},{1,1,2},{2,1,2},{2,1,3},{2,2,2},{2,3,2},{3,1,2}},{{0,0,0},{0,0,0}},5,"FinalState"],{0,0,0}]
In[]:=
Out[]=
HypergraphPlot[%]
In[]:=
Out[]=
DeleteCases[WolframModel[{{1,2,1},{2,1,1}}{{1,1,1},{1,1,2},{2,1,2},{2,1,3},{2,2,2},{2,3,2},{3,1,2}},{{0,0,0},{0,0,0}},5,"FinalState"],0,Infinity]
In[]:=
Out[]=
HypergraphPlot[%]
In[]:=
Out[]=
HypergraphPlot[DeleteCases[WolframModel[{{1,2,1},{2,1,1}}{{1,1,1},{1,1,2},{2,1,2},{2,1,3},{2,2,2},{2,3,2},{3,1,2}},{{0,0,0},{0,0,0}},6,"FinalState"],0,Infinity]]
In[]:=
Out[]=
{{2,3}}{{7,3}},5
{{2,3}}{{7,3}},5
Select[Union[Table[RandomWolframModelRule[{{2,3}}{{7,3}},5],50]],NewVerticesQ]
In[]:=
Out[]=
ParallelMapMonitored[SafeHyperModelTestButton[#,10,4]&,%]
In[]:=
Out[]=
ParallelMapMonitored[SafeHyperModelTestButton[#,15,10]&,{{{1,1,2},{1,1,3}}{{1,1,4},{1,3,4},{2,3,2},{2,3,5},{2,5,3},{5,3,2},{5,4,5}},{{1,1,2},{3,2,2}}{{1,2,4},{1,4,5},{2,1,2},{3,4,1},{4,1,1},{4,4,1},{4,5,4}},{{1,2,1},{1,3,2}}{{1,1,4},{1,3,1},{2,1,5},{2,4,5},{3,5,2},{3,5,5},{5,3,1}},{{1,2,1},{2,3,3}}{{1,2,4},{2,5,1},{3,1,2},{3,5,1},{4,1,4},{5,1,2},{5,2,2}}}]
In[]:=
Out[]=
ParallelMapMonitored[SafeModelCount[#,20,10]&,{{{1,1,2},{1,1,3}}{{1,1,4},{1,3,4},{2,3,2},{2,3,5},{2,5,3},{5,3,2},{5,4,5}},{{1,1,2},{3,2,2}}{{1,2,4},{1,4,5},{2,1,2},{3,4,1},{4,1,1},{4,4,1},{4,5,4}},{{1,2,1},{1,3,2}}{{1,1,4},{1,3,1},{2,1,5},{2,4,5},{3,5,2},{3,5,5},{5,3,1}},{{1,2,1},{2,3,3}}{{1,2,4},{2,5,1},{3,1,2},{3,5,1},{4,1,4},{5,1,2},{5,2,2}}}]
In[]:=
{{2,7,17,27},{2,7,12,22,32,42,52,62,72,82,92,102,112,122,132,142,152,162,172,182,192},{2,7,12,17},{2,7,22,32}}
Out[]=
HypergraphPlot/@WolframModel[{{1,1,2},{3,2,2}}{{1,2,4},{1,4,5},{2,1,2},{3,4,1},{4,1,1},{4,4,1},{4,5,4}},{{0,0,0},{0,0,0}},15,"StatesList"]
In[]:=
Out[]=
RulePlot[WolframModel[{{1,1,2},{3,2,2}}{{1,2,4},{1,4,5},{2,1,2},{3,4,1},{4,1,1},{4,4,1},{4,5,4}}]]
In[]:=
Out[]=
SafeModelCount[{{1,1,2},{3,2,2}}{{1,2,4},{1,4,5},{2,1,2},{3,4,1},{4,1,1},{4,4,1},{4,5,4}},30,10]
In[]:=
{2,7,12,22,32,42,52,62,72,82,92,102,112,122,132,142,152,162,172,182,192,202,212,222,232,242,252,262,272,282,292}
Out[]=
WolframModel[{{1,1,2},{3,2,2}}{{1,2,4},{1,4,5},{2,1,2},{3,4,1},{4,1,1},{4,4,1},{4,5,4}},{{0,0,0},{0,0,0}},15,"FinalState"]
In[]:=
Out[]=
Graphics3D[Point[%]]
In[]:=
Out[]=