Hyperedge-based rules

2 3-edges (2 symbols) ⟶ 3 3-edges (3 symbols)

Union[Table[RandomInteger[{1,2},{2,3}]->RandomInteger[{1,3},{3,3}],30]]
In[]:=
Out[]=
ParallelMapMonitored[SafeHyperModelTestButton[#,10,4]&,%]
In[]:=
Out[]=
Union[Table[RandomInteger[{1,2},{2,3}]->RandomInteger[{1,3},{3,3}],30]];
In[]:=
ParallelMapMonitored[SafeHyperModelTestButton[#,10,4]&,%]
In[]:=
Out[]=

2 3-edges (2 symbols) ⟶ 4 3-edges (3 symbols)

Union[Table[RandomInteger[{1,2},{2,3}]->RandomInteger[{1,3},{4,3}],30]];
In[]:=
ParallelMapMonitored[SafeHyperModelTestButton[#,10,4]&,%]
In[]:=
Out[]=
OrderedHypergraphPlot[WolframModel[{{2,2,1},{2,2,2}}{{1,1,3},{1,1,1},{2,1,2},{3,3,2}},Table[{0,0,0},3],15,"FinalState"]]
In[]:=
Out[]=
OrderedHypergraphPlot[WolframModel[{{2,2,1},{2,2,2}}{{1,1,3},{1,1,1},{2,1,2},{3,3,2}},Table[{0,0,0},3],25,"FinalState"]]
In[]:=
Out[]=
RulePlot[WolframModel[{{2,2,1},{2,2,2}}{{1,1,3},{1,1,1},{2,1,2},{3,3,2}}]]
In[]:=
Out[]=
WolframModel[{{2,2,1},{2,2,2}}{{1,1,3},{1,1,1},{2,1,2},{3,3,2}},Table[{0,0,0},3],25,"CausalGraph"]
In[]:=
Out[]=
WolframModel[{{2,2,1},{2,2,2}}{{1,1,3},{1,1,1},{2,1,2},{3,3,2}},Table[{0,0,0},3],100,"CausalGraph"]
In[]:=
Out[]=
OrderedHypergraphPlot[WolframModel[{{2,2,1},{2,2,2}}{{1,1,3},{1,1,1},{2,1,2},{3,3,2}},Table[{0,0,0},3],100,"FinalState"]]
In[]:=
Out[]=
Union[Table[RandomInteger[{1,2},{2,3}]->RandomInteger[{1,3},{4,3}],50]];
In[]:=
ParallelMapMonitored[SafeHyperModelTestButton[#,10,4]&,%]
In[]:=
LinkObject
:Unable to communicate with closed link LinkObject['/Applications/Wolfram Research/Wolfram Desktop Development/Main Branch/12.1.0/6468776/Wolfram Desktop-6468776.app/Contents/MacOS/WolframKernel' -subkernel -noinit -nopaclet -wstp,1462,13].
Kernels
:Subkernel connected through KernelObject[3,local] appears dead.
Parallel`Developer`QueueRun
::req
:Requeueing evaluations {303} assigned to KernelObject[3,local,<defunct>].
LaunchKernels
:Kernel KernelObject[3,local,<defunct>] resurrected as KernelObject[13,local].
LinkObject
:Unable to communicate with closed link LinkObject['/Applications/Wolfram Research/Wolfram Desktop Development/Main Branch/12.1.0/6468776/Wolfram Desktop-6468776.app/Contents/MacOS/WolframKernel' -subkernel -noinit -nopaclet -wstp,1461,12].
Kernels
:Subkernel connected through KernelObject[2,local] appears dead.
Parallel`Developer`QueueRun
::req
:Requeueing evaluations {303} assigned to KernelObject[2,local,<defunct>].
LaunchKernels
:Kernel KernelObject[2,local,<defunct>] resurrected as KernelObject[14,local].
Union[Table[RandomInteger[{1,2},{2,3}]->RandomInteger[{1,3},{4,3}],30]];
In[]:=
ParallelMapMonitored[SafeHyperModelTestButton[Echo@#,10,4]&,%]
In[]:=
Out[]=
Union[Table[RandomInteger[{1,2},{2,3}]->RandomInteger[{1,3},{4,3}],30]];
In[]:=
ParallelMapMonitored[SafeHyperModelTestButton[#,10,4]&,%]
In[]:=
Out[]=
Union[Table[RandomInteger[{1,2},{2,3}]->RandomInteger[{1,3},{4,3}],30]];
In[]:=
ParallelMapMonitored[SafeHyperModelTestButton[#,10,4]&,%]
In[]:=
Out[]=
OrderedHypergraphPlot[WolframModel[{{1,2,1},{2,2,2}}{{3,2,3},{2,3,1},{1,1,1},{2,1,3}},Table[{0,0,0},3],20,"FinalState"]]
In[]:=
Out[]=
Union[Table[RandomInteger[{1,2},{2,3}]->RandomInteger[{1,3},{4,3}],30]];
In[]:=
ParallelMapMonitored[SafeHyperModelTestButton[Echo@#,10,4]&,%]
In[]:=
Out[]=

2 3-edges (2 symbols) ⟶ 4 3-edges (4 symbols)

Union[Table[RandomInteger[{1,2},{2,3}]->RandomInteger[{1,4},{4,3}],30]];
In[]:=
ParallelMapMonitored[SafeHyperModelTestButton[Echo@#,10,4]&,%]
In[]:=
Out[]=

2 3-edges (3 symbols) ⟶ 4 3-edges (4 symbols)

Union[Table[RandomInteger[{1,3},{2,3}]->RandomInteger[{1,4},{4,3}],30]];
In[]:=
ParallelMapMonitored[SafeHyperModelTestButton[Echo@#,10,4]&,%]
In[]:=
Out[]=
OrderedHypergraphPlot[WolframModel[{{2,2,2},{1,3,2}}{{1,2,2},{1,1,4},{3,4,2},{2,3,1}},Table[{0,0,0},3],20,"FinalState"]]
In[]:=
Out[]=
Union[Table[RandomInteger[{1,3},{2,3}]->RandomInteger[{1,4},{4,3}],30]];
In[]:=
ParallelMapMonitored[SafeHyperModelTestButton[Echo@#,10,4]&,%]
In[]:=
Out[]=
OrderedHypergraphPlot[WolframModel[{{2,2,2},{2,1,3}}{{2,3,4},{4,4,4},{1,1,3},{3,1,1}},Table[{0,0,0},3],20,"FinalState"]]
In[]:=
Out[]=
OrderedHypergraphPlot[WolframModel[{{2,2,2},{2,1,3}}{{2,3,4},{4,4,4},{1,1,3},{3,1,1}},Table[{0,0,0},2],20,"FinalState"]]
In[]:=
Out[]=
OrderedHypergraphPlot[WolframModel[{{2,2,2},{2,1,3}}{{2,3,4},{4,4,4},{1,1,3},{3,1,1}},Table[{0,0,0},2],20,"FinalState"],"HyperedgeStyle""Colors"]
In[]:=
Out[]=
RulePlot[WolframModel[{{2,2,2},{2,1,3}}{{2,3,4},{4,4,4},{1,1,3},{3,1,1}}]]
In[]:=
Out[]=
OrderedHypergraphPlot[{{2,3,4},{4,4,4},{1,1,3},{3,1,1}},VertexLabels->Automatic]
In[]:=
Out[]=
OrderedHypergraphPlot[{{2,3,4},{4,4,4},{1,1,3},{3,1,1}},VertexLabels->Automatic,"HyperedgeStyle""Colors"]
In[]:=
Out[]=
WolframModel[{{2,2,2},{2,1,3}}{{2,3,4},{4,4,4},{1,1,3},{3,1,1}},Table[{0,0,0},2],20,"CausalGraph"]
In[]:=
Out[]=
WolframModel[{{2,2,2},{2,1,3}}{{2,3,4},{4,4,4},{1,1,3},{3,1,1}},Table[{0,0,0},2],40,"CausalGraph"]
In[]:=
Out[]=
WolframModel[{{2,2,2},{2,1,3}}{{2,3,4},{4,4,4},{1,1,3},{3,1,1}},Table[{0,0,0},2],50,"CausalGraph"]
In[]:=
Out[]=
GraphPlot3D[%]
In[]:=
Out[]=