WOLFRAM NOTEBOOK

More Complex Initial Conditions

In[]:=
Map[Length,EnumerateRules[3,2],{2}]
Out[]=
In[]:=
EnumerateRules[3,2]
Out[]=
In[]:=
list={};ParallelMap[Button[Graph[Rule@@@WolframModel[#,{{0,0},{0,0}},6,"FinalState"]],AppendTo[list,#]]&,%]
[[ nothing exciting ]]
In[]:=
EnumerateRules[3,3];
In[]:=
list={};ParallelMap[Button[Graph[Rule@@@WolframModel[#,{{0,0},{0,0}},6,"FinalState"]],AppendTo[list,#]]&,%]
In[]:=
list
Out[]=
{{{1,2}}{{1,3},{3,2}},{{1,1}}{{1,2},{3,2}}}
In[]:=
Graph[Rule@@@WolframModel[#,{{0,0},{0,0}},8,"FinalState"]]&/@{{{1,2}}{{1,3},{3,2}},{{1,1}}{{1,2},{3,2}}}
Out[]=
In[]:=
EnumerateRules[3,3];
In[]:=
list={};ParallelMap[Button[Graph[Rule@@@WolframModel[#,{{0,0},{0,0}},6,"FinalState"],ImageSizeTiny],AppendTo[list,#]]&,%]
In[]:=
EnumerateRules[3,4];
In[]:=
Length[%]
Out[]=
214
In[]:=
list={};ParallelMap[Button[Graph[Rule@@@WolframModel[#,{{0,0},{0,0}},6,"FinalState"],ImageSizeTiny],AppendTo[list,#]]&,%%]
In[]:=
list={};ParallelMap[Button[Graph[Rule@@@WolframModel[#,{{0,0},{0,1}},6,"FinalState"],ImageSizeTiny],AppendTo[list,#]]&,%60]
In[]:=
%60
Out[]=
In[]:=
RulePlot[WolframModel[#]]&/@RandomSample[%,10]
Out[]=
In[]:=
RulePlot[WolframModel[{{1,1}}{{2,3},{2,4}}]]
Thread
:Objects of unequal length in {1}{} cannot be combined.
Join
:Heads Rule and List at positions 1 and 2 are expected to be the same.
ReplaceAll
:{Association[Join[SetReplace`OrderedHypergraphPlot`PackagePrivate`otherCoordinates$41241,SetReplace`OrderedHypergraphPlot`PackagePrivate`referenceCoordinates$41241]]} is neither a list of replacement rules nor a valid dispatch table, and so cannot be used for replacing.
General
:Further output of GraphPlot::graph will be suppressed during this calculation.
Out[]=
RulePlot[WolframModel[{{1,1}}{{2,3},{2,4}}]]
In[]:=
RulePlot[WolframModel[{{1,1}}{{2,3},{2,4}}]]
Out[]=
In[]:=
EnumerateRules[4,2];
In[]:=
list={};ParallelMap[Button[Graph[Rule@@@WolframModel[#,{{0,0},{0,0}},6,"FinalState"]],AppendTo[list,#]]&,%]
In[]:=
list
Out[]=
{{{1,1}}{{1,1},{2,1},{2,1}},{{1,1}}{{1,1},{1,1},{2,2}}}
In[]:=
Graph[Rule@@@WolframModel[#,{{0,0},{0,0}},8,"FinalState"]]&/@{{{1,1}}{{1,1},{2,1},{2,1}},{{1,1}}{{1,1},{1,1},{2,2}}}
Out[]=
In[]:=
Graph[Rule@@@WolframModel[#,{{0,0},{0,0}},7,"FinalState"]]&/@{{{1,1}}{{1,1},{2,1},{2,1}},{{1,1}}{{1,1},{1,1},{2,2}}}
Out[]=
In[]:=
EnumerateRules[5,2];
In[]:=
Length[%]
Out[]=
620
In[]:=
ListLinePlot[Length/@WolframModel[#,{{0,0},{0,0}},6,"StatesList"],AxesNone,Filling->Bottom,ImageSizeTiny]&/@EnumerateRules[3,2]

Random Rules

[[ aborted ]]
NOTE: this rule has a disconnected LHS. The rule is effectively nonlocal, because it can pick up pieces from anywhere in the system.

Simpler random rules

\b3 edges (3 symbols) 4 edges (4 symbols)

\b3 edges (3 symbols) 5 edges (4 symbols)

This one seems to die out after a few steps.....
Wolfram Cloud

You are using a browser not supported by the Wolfram Cloud

Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.


I understand and wish to continue anyway »

You are using a browser not supported by the Wolfram Cloud. Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.