Prize Specimens for Binary-Edge Rules

(All with {{0,0}} initial conditions)

1 edge  2 edges

Labeled[OrderedHypergraphPlot[WolframModel[#,{{0,0}},6,"FinalState"]],RulePlot[WolframModel[#]]]&/@{{{1,2}}{{1,1},{2,3}},{{1,2}}{{1,2},{2,3}},{{1,2}}{{1,2},{3,1}},{{1,2}}{{1,3},{2,1}},{{1,2}}{{1,3},{2,3}},{{1,2}}{{2,1},{2,3}},{{1,2}}{{2,1},{3,1}},{{1,2}}{{2,1},{3,2}}}
In[]:=
Out[]=

Causal graphs

WolframModel[#,{{0,0}},6,"CausalGraph"]&/@{{{1,2}}{{1,1},{2,3}},{{1,2}}{{1,2},{2,3}},{{1,2}}{{1,2},{3,1}},{{1,2}}{{1,3},{2,1}},{{1,2}}{{1,3},{2,3}},{{1,2}}{{2,1},{2,3}},{{1,2}}{{2,1},{3,1}},{{1,2}}{{2,1},{3,2}}}
In[]:=
Out[]=

A specific case

ParallelMap[OrderedHypergraphPlot,WolframModel[{{1,2}}{{1,2},{2,3}},{{0,0}},8,"StatesList"]]
In[]:=
Out[]=
ParallelMap[LayeredGraphPlot[Rule@@@#,AspectRatio1]&,WolframModel[{{1,2}}{{1,2},{2,3}},{{0,0}},8,"StatesList"]]
In[]:=
Out[]=
ParallelMap[LayeredGraphPlot[Rule@@@#,AspectRatio1,VertexLabelsAutomatic]&,WolframModel[{{1,2}}{{1,2},{2,3}},{{0,0}},5,"StatesList"]]
In[]:=
Out[]=
RulePlot[WolframModel[{{1,2}}{{1,2},{2,3}}]]
In[]:=
Out[]=

2 edges  3 edges

Labeled[OrderedHypergraphPlot[WolframModel[#,{{0,0}},6,"FinalState"]],RulePlot[WolframModel[#]]]&/@{{{1,2}}{{1,2},{1,3},{3,2}},{{1,2}}{{1,3},{1,3},{2,3}},{{1,2}}{{1,3},{2,2},{2,3}},{{1,2}}{{3,1},{3,1},{3,2}}}
In[]:=
Out[]=
ParallelMap[Labeled[Map[OrderedHypergraphPlot,WolframModel[#,{{0,0}},6,"StatesList"]],RulePlot[WolframModel[#]],Left]&,{{{1,2}}{{1,2},{1,3},{3,2}},{{1,2}}{{1,3},{1,3},{2,3}},{{1,2}}{{1,3},{2,2},{2,3}},{{1,2}}{{3,1},{3,1},{3,2}}}]
In[]:=
Out[]=
%14[[2]]
In[]:=
Out[]=
#[[1]]&/@%14
In[]:=
Out[]=
Graph[Rule@@@WolframModel[{{1,2}}{{1,3},{2,2},{2,3}},{{0,0}},4,"FinalState"]]
In[]:=
Out[]=
Graph[Rule@@@WolframModel[{{1,2}}{{1,3},{2,2},{2,3}},{{0,0}},5,"FinalState"]]
In[]:=
Out[]=
Labeled[Graph[
,GraphLayout#],#]&/@{"GravityEmbedding","HighDimensionalEmbedding","PlanarEmbedding","SpectralEmbedding","SpringElectricalEmbedding","SpringEmbedding","TutteEmbedding"}
In[]:=
Out[]=
LabeledGraph
,GraphLayout#,#&/@{"GravityEmbedding","HighDimensionalEmbedding","PlanarEmbedding","SpectralEmbedding","SpringElectricalEmbedding","SpringEmbedding","TutteEmbedding"}
In[]:=
Out[]=
Labeled[Graph[
,GraphLayout#],#]&/@{"BipartiteEmbedding","CircularEmbedding","CircularMultipartiteEmbedding","DiscreteSpiralEmbedding","GridEmbedding","LinearEmbedding","MultipartiteEmbedding","SpiralEmbedding","StarEmbedding"}
In[]:=
Out[]=
ArrayPlot[AdjacencyMatrix[Graph[Rule@@@WolframModel[{{1,2}}{{1,3},{2,2},{2,3}},{{0,0}},6,"FinalState"]]]]
In[]:=
Out[]=
Graph[Rule@@@WolframModel[{{1,2}}{{1,2},{1,3},{3,2}},{{0,0}},5,"FinalState"]]
In[]:=
Out[]=
LabeledGraph
,GraphLayout#,#&/@{"GravityEmbedding","HighDimensionalEmbedding","PlanarEmbedding","SpectralEmbedding","SpringElectricalEmbedding","SpringEmbedding","TutteEmbedding"}
In[]:=
Out[]=
LabeledGraphPlot3D
,GraphLayout#,#&/@{"GravityEmbedding","HighDimensionalEmbedding","PlanarEmbedding","SpectralEmbedding","SpringElectricalEmbedding","SpringEmbedding","TutteEmbedding"}
In[]:=
Out[]=
​
Graph[Rule@@@WolframModel[{{1,2}}{{1,2},{1,3},{3,2}},{{0,0}},6,"FinalState"]]
In[]:=
Out[]=
LabeledGraph
,GraphLayout#,#&/@{"GravityEmbedding","HighDimensionalEmbedding","PlanarEmbedding","SpectralEmbedding","SpringElectricalEmbedding","SpringEmbedding","TutteEmbedding"}
In[]:=
Out[]=
LabeledGraph
,GraphLayout#,#&/@{"BipartiteEmbedding","CircularEmbedding","CircularMultipartiteEmbedding","DiscreteSpiralEmbedding","GridEmbedding","LinearEmbedding","MultipartiteEmbedding","SpiralEmbedding","StarEmbedding"}
In[]:=
Out[]=
​
ArrayPlot[AdjacencyMatrix[Graph[Rule@@@WolframModel[{{1,2}}{{1,2},{1,3},{3,2}},{{0,0}},8,"FinalState"]]]]
In[]:=
Out[]=

Causal graphs

WolframModel[#,{{0,0}},6,"CausalGraph"]&/@{{{1,2}}{{1,2},{1,3},{3,2}},{{1,2}}{{1,3},{1,3},{2,3}},{{1,2}}{{1,3},{2,2},{2,3}},{{1,2}}{{3,1},{3,1},{3,2}}}
In[]:=
Out[]=
GraphPlot3D[WolframModel[{{1,2}}{{1,2},{1,3},{3,2}},{{0,0}},6,"CausalGraph"]]
In[]:=
Out[]=
GraphPlot3D[WolframModel[{{1,2}}{{1,2},{1,3},{3,2}},{{0,0}},6,"CausalGraph"],VertexSizeTiny,EdgeStyleThin]
In[]:=
Out[]=
GraphPlot3D[WolframModel[{{1,2}}{{1,2},{1,3},{3,2}},{{0,0}},6,"CausalGraph"],PlotTheme"Minimal"]
In[]:=
Out[]=