Graph[Rule@@@#,GraphLayout->"SpringElectricalEmbedding"]&@WolframModel[{{x,y},{x,z}}{{x,w},{y,w},{z,w}},{{0,0},{0,0}},30,"FinalState","EventOrderingFunction""Random"]
In[]:=
Out[]=
Table[Graph[Rule@@@#,GraphLayout->"SpringElectricalEmbedding"]&@WolframModel[{{x,y},{x,z}}{{x,w},{y,w},{z,w}},{{0,0},{0,0}},30,"FinalState","EventOrderingFunction""Random"],5]
In[]:=
Out[]=
Gather[%,IsomorphicGraphQ]
In[]:=
Out[]=
Graph[Rule@@@#,GraphLayout->"SpringElectricalEmbedding"]&@WolframModel[{{x,y},{x,z}}{{x,w},{y,w},{z,w}},{{0,0},{0,0}},30,"FinalState"]
In[]:=
Out[]=
{{1,2},{2,3}}{{1,4},{4,3},{3,1}}/.{1x,2y,3z,4w}
In[]:=
{{x,y},{y,z}}{{x,w},{w,z},{z,x}}
Out[]=
RulePlot[WolframModel[{{x,y},{y,z}}{{x,w},{w,z},{z,x}}]]
In[]:=
Out[]=
Graph[Rule@@@#,GraphLayout"SpringElectricalEmbedding",ImageSizeTiny]&/@WolframModel[{{1,2},{2,3}}{{1,4},{4,3},{3,1}},{{0,0},{0,0}},16,"StatesList"]
In[]:=
Out[]=
Graph[Rule@@@#]&/@WolframModel[{{1,2},{2,3}}{{1,4},{4,3},{3,1}},{{0,0},{0,0}},20,"StatesList"];
In[]:=
ConnectedGraphQ[UndirectedGraph[#]]&/@%
In[]:=
{True,True,True,True,True,True,True,True,True,True,True,True,True,True,True,True,True,True,True,True,True}
Out[]=
Last[%135]
In[]:=
Out[]=
LayeredGraphPlot[%]
In[]:=
Out[]=
EdgeCount/@%135
In[]:=
{2,3,4,6,9,13,19,28,42,62,92,137,203,301,449,670,1000,1494,2235,3339,4995}
Out[]=
FindSequenceFunction[%]
In[]:=
$Aborted
Out[]=
FindLinearRecurrence[%139]
In[]:=
FindLinearRecurrence[{2,3,4,6,9,13,19,28,42,62,92,137,203,301,449,670,1000,1494,2235,3339,4995}]
Out[]=
Ratios[%139]//N
In[]:=
{1.5,1.33333,1.5,1.5,1.44444,1.46154,1.47368,1.5,1.47619,1.48387,1.48913,1.48175,1.48276,1.49169,1.4922,1.49254,1.494,1.49598,1.49396,1.49596}
Out[]=
ListLinePlot[%]
In[]:=
Out[]=
Log[1.5,%139]
In[]:=
{1.70951,2.70951,3.41902,4.41902,5.41902,6.32594,7.26188,8.21823,9.21823,10.1788,11.1521,12.1342,13.104,14.0755,15.0618,16.0489,17.0366,18.0267,19.0201,20.0102,21.0035}
Out[]=
"EventOrderingFunction""Random"
Table[Graph[Rule@@@#,ImageSizeTiny]&@WolframModel[{{1,2},{2,3}}{{1,4},{4,3},{3,1}},{{0,0},{0,0}},10,"FinalState","EventOrderingFunction""Random"],6]
In[]:=
Out[]=
HypergraphPlot/@WolframModel[{{1},{1}}{{1},{1},{1}},{{0},{0}},5,"StatesList"]
In[]:=
Out[]=
Length/@HypergraphPlot/@WolframModel[{{1},{2}}{{1},{2},{3}},{{0},{0}},5,"StatesList"]
In[]:=
{2,2,2,2,2,2}
Out[]=