GraphPlot[Rule@@@WolframModel[{{0,1},{0,2},{0,3}}{{1,2},{2,3},{3,4},{4,1},{4,3}},Table[0,3,2],20,"FinalState"]]
In[]:=
Out[]=
gridstart[list_]:=Catenate[EdgeList[GridGraph[list]]/.UndirectedEdge[a_,b_]{{a,b},{b,a}}]
In[]:=
fromgraph[g_]:=Catenate[EdgeList[g]/.UndirectedEdge[a_,b_]{{a,b},{b,a}}]
In[]:=
GraphPlot[Rule@@@WolframModel[{{0,1},{0,2},{0,3}}{{1,2},{2,3},{3,4},{4,1},{4,3}},gridstart[{6,6}],5,"FinalState"]]
In[]:=
Out[]=
GraphPlot[Rule@@@#]&/@WolframModel[{{0,1},{0,2},{0,3}}{{1,2},{2,3},{3,4},{4,1},{4,3}},gridstart[{6,6}],5,"StatesList"]
In[]:=
Out[]=
LayeredCausalGraph[WolframModel[{{0,1},{0,2},{0,3}}{{1,2},{2,3},{3,4},{4,1},{4,3}},gridstart[{6,6}],5]]
In[]:=
Out[]=
LayeredCausalGraph3D[WolframModel[{{0,1},{0,2},{0,3}}{{1,2},{2,3},{3,4},{4,1},{4,3}},gridstart[{6,6}],5]]
In[]:=
GraphPlot[Rule@@@#]&/@WolframModel[{{0,1},{0,2},{0,3}}{{1,2},{3,2},{3,4},{4,3},{4,4}},gridstart[{6,6}],6,"StatesList"]
In[]:=
Out[]=
GraphPlot[Rule@@@#]&@WolframModel[{{0,1},{0,2},{0,3}}{{1,2},{3,2},{3,4},{4,3},{4,4}},gridstart[{6,6}],<|"MaxEvents"1|>,"FinalState"]
In[]:=
Out[]=
GraphPlot[Rule@@@#]&/@WolframModel[{{0,1},{0,2},{0,3}}{{1,2},{3,2},{3,4},{4,3},{4,4}},gridstart[{6,6}],<|"MaxEvents"10|>,"UpdatedStatesList"]
In[]:=
Out[]=
GraphPlot[Rule@@@#]&/@WolframModel[{{0,1},{0,2},{0,3}}{{1,2},{2,3},{3,4},{4,1},{4,3}},gridstart[{6,6}],<|"MaxEvents"20|>,"UpdatedStatesList"]
In[]:=
Out[]=
GraphPlot[Rule@@@#]&/@Take[WolframModel[{{0,1},{0,2},{0,3}}{{1,2},{2,3},{3,4},{4,1},{4,3}},gridstart[{6,6}],<|"MaxEvents"50|>,"UpdatedStatesList"],1;;-1;;5]
In[]:=
Out[]=
GraphPlot[Rule@@@#]&/@Take[WolframModel[{{0,1},{0,2},{0,3}}{{1,2},{2,3},{3,4},{4,1},{4,3}},fromgraph[CompleteGraph[6]],<|"MaxEvents"50|>,"UpdatedStatesList"],1;;-1;;5]
In[]:=
Out[]=
GraphPlot[Rule@@@#]&/@WolframModel[{{0,1},{0,2},{0,3}}{{1,2},{3,2},{3,4},{4,3},{4,4}},fromgraph[CompleteGraph[6]],8,"StatesList"]
In[]:=
Out[]=
GraphPlot[Rule@@@#]&/@WolframModel[{{0,1},{0,2},{0,3}}{{1,2},{2,3},{3,4},{4,1},{4,3}},fromgraph[CompleteGraph[6]],8,"StatesList"]
In[]:=
Out[]=
rg=RandomGraph[{20,30}]
In[]:=
Out[]=
GraphPlot[Rule@@@#]&/@WolframModel[{{0,1},{0,2},{0,3}}{{1,2},{2,3},{3,4},{4,1},{4,3}},fromgraph[rg],8,"StatesList"]
In[]:=
Out[]=
GraphPlot[Rule@@@#]&/@WolframModel[{{{1,2},{1,3},{1,4}}{{5,6},{6,7},{7,5},{5,7},{7,6},{6,5},{5,2},{6,3},{7,4}}},fromgraph[rg],5,"StatesList"]
In[]:=
Out[]=
GraphPlot[Rule@@@#]&/@WolframModel[{{{1,2},{1,3},{1,4}}{{5,6},{6,7},{7,5},{5,7},{7,6},{6,5},{5,2},{6,3},{7,4}}},fromgraph[GridGraph[{5,5}]],3,"StatesList"]
In[]:=
Out[]=
GraphPlot[Rule@@@#]&/@WolframModel[{{{1,2},{1,3},{1,4}}{{5,6},{6,7},{7,5},{5,7},{7,6},{6,5},{5,2},{6,3},{7,4}}},fromgraph[GridGraph[{2,2}]],4,"StatesList"]
In[]:=


Out[]=
GraphPlot[Rule@@@#]&/@WolframModel[{{{1,2},{1,3},{1,4}}{{5,6},{6,7},{7,5},{5,7},{7,6},{6,5},{5,2},{6,3},{7,4}}},fromgraph[GridGraph[{3,3}]],4,"StatesList"]
In[]:=
Out[]=
GraphPlot[Rule@@@#]&/@WolframModel{{0,1},{0,2},{0,3}}{{1,2},{2,3},{3,4},{4,1},{4,3}},fromgraphIndexGraph
,4,"StatesList"
In[]:=
Out[]=
<<IGraphM`;
In[]:=
IGraph/M 0.3.112 (May 7, 2019)
Evaluate
IGDocumentation[]
to get started.
HypergraphPlot[Catenate[Partition[#,3,2,-1]&/@MeshCells[IGLatticeMesh["Hexagonal",Polygon@CirclePoints[3,6],MeshCellLabel{2"Index"}],2][[All,1]]]]
In[]:=
Out[]=
Catenate[Partition[#,3,2,-1]&/@MeshCells[IGLatticeMesh["Hexagonal",Polygon@CirclePoints[3,6],MeshCellLabel{2"Index"}],2][[All,1]]]
In[]:=
Out[]=
HypergraphPlot[Catenate[Partition[#,2,1,-1]&/@MeshCells[IGLatticeMesh["Hexagonal",Polygon@CirclePoints[3,6],MeshCellLabel{2"Index"}],2][[All,1]]]]
In[]:=
Out[]=
<|2Catenate[Partition[#,2,1,-1]&/@MeshCells[IGLatticeMesh["Hexagonal",Polygon@CirclePoints[3,6],MeshCellLabel{2"Index"}],2][[All,1]]],3->Catenate[Partition[#,3,2,-1]&/@MeshCells[IGLatticeMesh["Hexagonal",Polygon@CirclePoints[3,6],MeshCellLabel{2"Index"}],2][[All,1]]]|>
In[]:=
Out[]=
Length[{{{0,1},{0,2},{0,3}}{{1,2},{2,3},{3,4},{4,1},{4,3}}}[[1,1,1]]]
{0,1}
Out[]=