WolframModel[{{{2,2,2},{2,1,3}}{{2,3,4},{4,4,4},{1,1,3},{3,1,1}}},Table[{0,0,0},2],30]
In[]:=
Out[]=
WolframModel[{{{2,2,2},{2,1,3}}{{2,3,4},{4,4,4},{1,1,3},{3,1,1}}},Table[{0,0,0},2],100]
In[]:=
Out[]=
WolframModel[{{{2,2,2},{2,1,3}}{{2,3,4},{4,4,4},{1,1,3},{3,1,1}}},Table[{0,0,0},2],100,TimeConstraint4]
In[]:=
Out[]=
HypergraphPlot[%["FinalState"]]
In[]:=
$Aborted[]
Out[]=
WolframModel[{{{2,2,2},{2,1,3}}{{2,3,4},{4,4,4},{1,1,3},{3,1,1}}},Table[{0,0,0},2],20]["FinalState"]//HypergraphPlot
In[]:=
Out[]=
WolframModel[{{{2,2,2},{2,1,3}}{{2,3,4},{4,4,4},{1,1,3},{3,1,1}}},Table[{0,0,0},2],30]["FinalState"]//HypergraphPlot
In[]:=
Out[]=
GraphPlot3D[Catenate[(Rule@@@Partition[#,2,1])&/@(WolframModel[{{{2,2,2},{2,1,3}}{{2,3,4},{4,4,4},{1,1,3},{3,1,1}}},Table[{0,0,0},2],30]["FinalState"])]]
In[]:=
Out[]=
GraphPlot3D[SimpleGraph@Catenate[(Rule@@@Partition[#,2,1])&/@(WolframModel[{{{2,2,2},{2,1,3}}{{2,3,4},{4,4,4},{1,1,3},{3,1,1}}},Table[{0,0,0},2],30]["FinalState"])]]
In[]:=
Out[]=
WolframModel[{{{2,2,2},{2,1,3}}{{2,3,4},{4,4,4},{1,1,3},{3,1,1}}},Table[{0,0,0},2],30,"CausalGraph"]
In[]:=
Out[]=
WolframModel[{{{2,2,2},{2,1,3}}{{2,3,4},{4,4,4},{1,1,3},{3,1,1}}},Table[{0,0,0},2],50,"CausalGraph"]
In[]:=
Out[]=
GraphPlot3D[%]
In[]:=
Out[]=
CanonicalGraph