metric is like Jacobian of transformation of surface

plot=Plot3D[1/Sqrt[x^2+y^2+1],{x,-4,4},{y,-4,4}]
In[]:=
Out[]=
Plot3D[1/Sqrt[x^2+y^2+1],{x,-4,4},{y,-4,4},MeshAll]
In[]:=
Out[]=
ColorFunction
DiscretizeRegion[DiscretizeGraphics[plot],MaxCellMeasure{"Length".2},PlotTheme"Lines"]
In[]:=
Out[]=
MeshConnectivityGraph[%,2]//GraphPlot
In[]:=
Out[]=
MeshConnectivityGraph[%146,2]//GraphPlot3D
In[]:=
Out[]=
plot=RevolutionPlot3D[2*Sqrt[(r-1)],{r,1,3},BoxRatios1]
In[]:=
Out[]=
plot=RevolutionPlot3D[2*Sqrt[(r-1)],{r,1,3},BoxRatios1,MeshAll]
In[]:=
Out[]=
DiscretizeRegion[DiscretizeGraphics[plot],MaxCellMeasure{"Length".5},PlotTheme"Lines"];
In[]:=
MeshConnectivityGraph[%,2]//GraphPlot
In[]:=
Out[]=
MeshConnectivityGraph[%%,2]//GraphPlot3D
In[]:=
Out[]=