2,2 3,2
2,2 3,2
Select[Table[RandomWolframModelRule[{{2,2}}{{3,2}},6],100],BiConnectedRuleQ]
In[]:=
Out[]=
res=ParallelMapMonitored[WolframModelTest[#,Table[{0,0},4]]&,Select[Table[RandomWolframModelRule[{{2,2}}{{3,2}},6],100],BiConnectedRuleQ]];
In[]:=
Counts[WMFilter4/@res]
In[]:=
BoringDifferences4,DiedFast11,Disconnected4,FewEvents3,MaybeInteresting1
Out[]=
MakePictures2[Select[res,WMFilter4[#]==="MaybeInteresting"&]]
In[]:=
Out[]=
res=ParallelMapMonitored[WolframModelTest[#,Table[{0,0},4]]&,Select[Table[RandomWolframModelRule[{{2,2}}{{3,2}},6],500],BiConnectedRuleQ]];
In[]:=
Counts[WMFilter4/@res]
In[]:=
Disconnected13,BoringDifferences33,DiedFast33,FewEvents18,TooMuchOfAVertex1,BoringDifferencesAfterTransient5,MaybeInteresting3
Out[]=
MakePictures2[Select[res,WMFilter4[#]==="MaybeInteresting"&]]
In[]:=
Out[]=
res=ParallelMapMonitored[WolframModelTest[#,Table[{0,0},8]]&,Select[Table[RandomWolframModelRule[{{2,2}}{{3,2}},6],500],BiConnectedRuleQ]];
In[]:=
Counts[WMFilter4/@res]
In[]:=
{0,2}
»
DiedFast73,BoringDifferences31,FewEvents3,Disconnected19,MaybeInteresting5,LinearRecurrenceGrowth1,BoringDifferencesAfterTransient8
Out[]=
MakePictures2[Select[res,MatchQ[WMFilter4[#],"MaybeInteresting"|"LinearRecurrenceGrowth"]&]]
In[]:=
{0,2}
»
Out[]=
Graph[Rule@@@WolframModel[{{1,2},{2,3}}{{1,4},{2,3},{4,3}},{{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}},12,"FinalState"]]
In[]:=
Out[]=
2,2 4,2
2,2 4,2
res=ParallelMapMonitored[WolframModelTest[#,Table[{0,0},8]]&,Select[Table[RandomWolframModelRule[{{2,2}}{{4,2}},6],500],BiConnectedRuleQ]];
In[]:=
Counts[WMFilter4/@res]
In[]:=
Disconnected12,DiedFast72,PureExponential6,MaybeInteresting5,BoringDifferences16,TooMuchOfAVertex1,BoringDifferencesAfterTransient1,FewEvents2
Out[]=
MakePictures2[Select[res,MatchQ[WMFilter4[#],"MaybeInteresting"|"LinearRecurrenceGrowth"|"PureExponential"]&]]
In[]:=
Out[]=
MakeDirectPictures2[{{{{1,2},{3,2}}{{2,3},{4,1},{4,3},{5,3}},{{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}},5}},5]
In[]:=
Out[]=
res=ParallelMapMonitored[WolframModelTest[#,Table[{0,0},8]]&,Select[Table[RandomWolframModelRule[{{2,2}}{{4,2}},6],500],BiConnectedRuleQ]];
In[]:=
Counts[WMFilter4/@res]
In[]:=
DiedFast59,Disconnected19,BoringDifferences18,BoringDifferencesAfterTransient5,FewEvents4,TooMuchOfAVertex2,PureExponential12,MaybeInteresting2
Out[]=
MakePictures2[Select[res,MatchQ[WMFilter4[#],"MaybeInteresting"|"LinearRecurrenceGrowth"|"PureExponential"]&]]
In[]:=
Out[]=
MakeDirectPictures2[{{{{1,2},{3,2}}{{3,1},{4,2},{4,3},{4,3}},{{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}},5}},4]
In[]:=
Out[]=
MakeDirectPictures2[{{{{1,2},{3,2}}{{3,1},{4,2},{4,3},{4,3}},{{0,0},{0,0}},5}},6]
In[]:=
Out[]=
MakePictures2[Select[res,MatchQ[WMFilter4[#],"MaybeInteresting"|"LinearRecurrenceGrowth"|"PureExponential"]&&ConnectedHypergraphQ[#["FinalState"]]&]]
In[]:=
Out[]=
res=ParallelMapMonitored[WolframModelTest[#,Table[{0,0},8]]&,Select[Table[RandomWolframModelRule[{{2,2}}{{4,2}},6],500],BiConnectedRuleQ]];
In[]:=
Counts[WMFilter4/@res]
In[]:=
Disconnected25,BoringDifferencesAfterTransient8,PureExponential9,BoringDifferences14,DiedFast74,FewEvents1,MaybeInteresting4,TooMuchOfAVertex1
Out[]=
MakePictures2[Select[res,MatchQ[WMFilter4[#],"MaybeInteresting"|"LinearRecurrenceGrowth"|"PureExponential"]&&ConnectedHypergraphQ[#["FinalState"]]&]]
In[]:=
Out[]=
MakeDirectPictures2[{{{{1,2},{1,3}}{{2,4},{4,3},{5,2},{5,4}},{{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}},7}},4]
In[]:=
Out[]=
MakeDirectPictures2[{{{{1,2},{1,3}}{{2,4},{4,3},{5,2},{5,4}},{{0,0},{0,0}},7}},6]
In[]:=
Out[]=
res=ParallelMapMonitored[WolframModelTest[#,Table[{0,0},8]]&,Select[Table[RandomWolframModelRule[{{2,2}}{{4,2}},6],5000],BiConnectedRuleQ]];
In[]:=
Counts[WMFilter4/@res]
In[]:=
{1,2,-2}
»
{1,2,-2}
»
{1,1}
»
DiedFast670,Disconnected185,FewEvents34,BoringDifferences124,PureExponential113,BoringDifferencesAfterTransient42,MaybeInteresting57,TooMuchOfAVertex13,LinearRecurrenceGrowth3
Out[]=
MakePictures2[Select[res,MatchQ[WMFilter4[#],"MaybeInteresting"|"LinearRecurrenceGrowth"|"PureExponential"]&&ConnectedHypergraphQ[#["FinalState"]]&]]
In[]:=
{1,2,-2}
»
{1,2,-2}
»
{1,1}
»
Out[]=
res=ParallelMapMonitored[WolframModelTest[#,Table[{0,0},4]]&,Select[Table[RandomWolframModelRule[{{2,2}}{{4,2}},6],5000],BiConnectedRuleQ]];
In[]:=
Counts[WMFilter4/@res]
In[]:=
{1,2,-2}
»
{1,2,-2}
»
{1,1}
»
DiedFast670,Disconnected185,FewEvents34,BoringDifferences124,PureExponential113,BoringDifferencesAfterTransient42,MaybeInteresting57,TooMuchOfAVertex13,LinearRecurrenceGrowth3
Out[]=
MakePictures2[Select[res,MatchQ[WMFilter4[#],"MaybeInteresting"|"LinearRecurrenceGrowth"|"PureExponential"|"BoringDifferencesAfterTransient"|"BoringDifferences"]&&ConnectedHypergraphQ[#["FinalState"]]&]]
In[]:=
{2,0,-1}
»
{2,0,-1}
»
{2,0,-1}
»
{2,2,-5,1}
»
{2,-1,1}
»
{2,0,-1}
»
{3,-3,1}
»
{2,0,-1}
»
Out[]=
MakeDirectPictures2[{{{{1,2},{1,3}}{{1,4},{2,1},{2,4},{3,4}},{{0,0},{0,0},{0,0},{0,0}},7},{{{1,2},{2,3}}{{1,2},{2,4},{4,1},{4,3}},{{0,0},{0,0},{0,0},{0,0}},7}},4]
In[]:=
Out[]=
MakeDirectPictures2[{{{{1,2},{1,3}}{{1,4},{2,1},{2,4},{3,4}},{{0,0},{0,0}},7},{{{1,2},{2,3}}{{1,2},{2,4},{4,1},{4,3}},{{0,0},{0,0}},7}},4]
In[]:=
Out[]=
2,3 3,3
2,3 3,3
maxConnectedAtoms[{{2,3}{3,3}}]
In[]:=
{11}
Out[]=
res=ParallelMapMonitored[WolframModelTest[#,Table[{0,0,0},6]]&,Select[Table[RandomWolframModelRule[{{2,3}}{{3,3}},11],500],BiConnectedRuleQ]];
In[]:=
Counts[WMFilter4/@res]
In[]:=
DiedFast126,Disconnected6,FewEvents18,BoringDifferences16,BoringDifferencesAfterTransient9,MaybeInteresting1,TooMuchOfAVertex1
Out[]=
MakePictures[Select[res,MatchQ[WMFilter4[#],"MaybeInteresting"|"LinearRecurrenceGrowth"|"PureExponential"]&&ConnectedHypergraphQ[#["FinalState"]]&]]
In[]:=
Out[]=
res=ParallelMapMonitored[WolframModelTest[#,Table[{0,0,0},6]]&,Select[Table[RandomWolframModelRule[{{2,3}}{{3,3}},11],2000],BiConnectedRuleQ]];
In[]:=
Counts[WMFilter4/@res]
In[]:=
{1,0,1}
»
Disconnected41,DiedFast406,BoringDifferences98,FewEvents46,BoringDifferencesAfterTransient27,MaybeInteresting5,LinearRecurrenceGrowth1
Out[]=
MakePictures[Select[res,MatchQ[WMFilter4[#],"MaybeInteresting"|"LinearRecurrenceGrowth"|"PureExponential"]&&ConnectedHypergraphQ[#["FinalState"]]&]]
In[]:=
{1,0,1}
»
Out[]=
MakeDirectPictures[{{{{1,2,3},{1,4,5}}{{1,6,4},{5,6,2},{6,2,3}},{{0,0,0},{0,0,0},{0,0,0},{0,0,0},{0,0,0},{0,0,0}},42}},20]
In[]:=
Out[]=
MakeDirectPictures[{{{{1,2,3},{1,4,5}}{{1,6,4},{5,6,2},{6,2,3}},{{0,0,0},{0,0,0}},42}},40]
In[]:=
Out[]=
MakeDirectPictures[{{{{1,2,3},{1,4,5}}{{1,6,4},{5,6,2},{6,2,3}},{{0,0,0},{0,0,0}},42}},80]
In[]:=
Out[]=
Length/@WolframModel[{{1,2,3},{1,4,5}}{{1,6,4},{5,6,2},{6,2,3}},{{0,0,0},{0,0,0}},42,"StatesList"]
In[]:=
{2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44}
Out[]=
Differences[%]
In[]:=
{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
Out[]=
WolframModel[{{1,2,3},{1,4,5}}{{1,6,4},{5,6,2},{6,2,3}},{{0,0,0},{0,0,0}},100]
In[]:=
Out[]=
HypergraphPlot[%["FinalState"]]
In[]:=
Out[]=
HypergraphPlot/@WolframModel[{{1,2,3},{1,4,5}}{{1,6,4},{5,6,2},{6,2,3}},{{0,0,0},{0,0,0}},10,"StatesList"]
In[]:=
Out[]=
res=ParallelMapMonitored[WolframModelTest[#,Table[{0,0,0},6]]&,Select[Table[RandomWolframModelRule[{{2,3}}{{3,3}},11],2000],BiConnectedRuleQ]];
In[]:=
Counts[WMFilter4/@res]
In[]:=
DiedFast412,BoringDifferences91,Disconnected27,MaybeInteresting3,FewEvents55,BoringDifferencesAfterTransient29,TooMuchOfAVertex1
Out[]=
MakePictures[Select[res,MatchQ[WMFilter4[#],"MaybeInteresting"|"LinearRecurrenceGrowth"|"PureExponential"|"BoringDifferencesAfterTransient"|"BoringDifferences"]&&ConnectedHypergraphQ[#["FinalState"]]&]]
In[]:=
Out[]=
MakeDirectPictures[{{{{1,2,3},{3,4,5}}{{1,3,5},{2,6,5},{5,5,7}},{{0,0,0},{0,0,0},{0,0,0},{0,0,0},{0,0,0},{0,0,0}},9},{{{1,2,1},{2,3,4}}{{2,5,4},{5,1,5},{5,6,2}},{{0,0,0},{0,0,0},{0,0,0},{0,0,0},{0,0,0},{0,0,0}},33}},5]
In[]:=
Out[]=
MakeDirectPictures[{{{{1,2,3},{3,4,5}}{{1,3,5},{2,6,5},{5,5,7}},{{0,0,0},{0,0,0}},9},{{{1,2,1},{2,3,4}}{{2,5,4},{5,1,5},{5,6,2}},{{0,0,0},{0,0,0}},33}},5]
In[]:=
Out[]=
res=ParallelMapMonitored[WolframModelTest[#,Table[{0,0,0},6]]&,Select[Table[RandomWolframModelRule[{{2,3}}{{3,3}},11],2000],BiConnectedRuleQ]];
In[]:=
Counts[WMFilter4/@res]
In[]:=
DiedFast405,FewEvents45,MaybeInteresting4,BoringDifferencesAfterTransient27,Disconnected37,BoringDifferences100,TooMuchOfAVertex2
Out[]=
MakePictures[Select[res,MatchQ[WMFilter4[#],"MaybeInteresting"|"LinearRecurrenceGrowth"|"PureExponential"|"BoringDifferencesAfterTransient"|"BoringDifferences"]&&ConnectedHypergraphQ[#["FinalState"]]&]]
In[]:=
[ none interesting ]