NeighborsPicture[g_,init_]:=​​Module[{connectedNodes,selfLoopNodeQ,toLines,​​toCircles,toSelfLoopCircles,​​nodePosition,g1,allNodes,graphicsBag,activeNodes,xCoord,usedNodes,​​nextNodes,nextNodes1},​​​​selfLoopNodeQ[n_]:=MemberQ[g,n->_List?(Count[#,n]===2&)];​​​​connectedNodes[l_]:=​​First/@Cases[ap=Apply[{{##},​​MemberQ[#1/.g,#2]&&MemberQ[#2/.g,#1]}&,​​so=(Sort/@Flatten[Table[{l[[i]],l[[j]]},​​{i,Length[l]},{j,i+1,Length[l]}],1]),{1}],{_,True}];​​​​toLines[{startNode_,endNodes_}]:=​​Line[{nodePosition[startNode],nodePosition[#]}]&/@endNodes;​​​​toSelfLoopCircles[node_]:=​​With[{mp=nodePosition[node]},​​{Circle[mp+{0,1/8},{1/4,1/8},{-Pi/2,Pi/2}],​​Circle[mp+{0,0},{1/4,1/4},{Pi/2,3Pi/2}],​​Circle[mp+{0,-1/8},{1/4,1/8},{-Pi/2,Pi/2}]}];​​​​toCircles[{node1_,node2_}]:=​​With[{mp1=nodePosition[node1],mp2=nodePosition[node2]},​​Circle[(mp1+mp2)/2,{1/2,Abs[mp1[[2]]-mp2[[2]]]/2},{-Pi/2,Pi/2}]];​​​​g1=Flatten/@Apply[List,g,{1}];​​allNodes=First/@g;​​graphicsBag={};​​activeNodes={allNodes[[init[[1]]]]};​​nodePosition[init[[1]]]={0,0};​​xCoord=1;​​usedNodes=activeNodes;​​If[selfLoopNodeQ[init[[1]]],​​AppendTo[graphicsBag,toSelfLoopCircles[init[[1]]]]];​​​​While[​​Union[(nextNodes=DeleteCases[activeNodes/.g,Alternatives@@​​usedNodes,{2}])]=!={{}},​​(*useeverynewnodeonlyonce*)​​nextNodes1=Delete[nextNodes,​​Last/@Select[Position[nextNodes,#]&/@​​Sort[Flatten[nextNodes]],{_,_}]];​​(*positionsofthenewnodes*)​​Apply[(nodePosition[#1]={xCoord,#2})&,​​First@Fold[{Append[#[[1]],Take[#[[2]],#2]],Drop[#[[2]],#2]}&,​​​​{{},MapIndexed[{#,#2[[1]]-1}&,Flatten[nextNodes1]]},Length/@nextNodes1],{-2}];​​(*thenewnodeconnections*)​​AppendTo[graphicsBag,​​{toLines/@Transpose[{activeNodes,nextNodes1}],​​toCircles/@connectedNodes[Flatten[nextNodes1]],​​toSelfLoopCircles/@Select[Flatten[nextNodes1],selfLoopNodeQ]}];​​usedNodes=Join[usedNodes,Flatten[nextNodes1]];​​activeNodes=Flatten[nextNodes1];​​xCoord=xCoord+1];​​​​Show[Graphics[{graphicsBag,Text[FontForm[ToString[#],​​{"Courier-Bold",14}],nodePosition[#]-{1/8,0}]&/@allNodes}]]];
NeighborsPicture[RandomNetwork[60],{1}]
⁃Graphics⁃
NeighborsPicture[RandomNetwork[100],{1}]
⁃Graphics⁃