WOLFRAM NOTEBOOK

  • When we iterate a Discrete Dynamical System we define the recursion equation as a function and the initial condition
  • A time series graph has our variable for time on the horizontal x axis and the output of our sequence p[n] on the vertical y axis.
  • A fundamental graph depicts the previous output of the sequence that we defined as p[n-1] on the horizontal axis and the following output of the sequence on the vertical axis. A point (x,y) thus represents (p[n-1],p[n]) . This plot sometimes called a cobweb diagram because of the way we draw the DDS toward or away from the equilibrium value on it. We also draw two functions on our graph. One is the line where p[n-1]=p[n] or (x=y). The other is the line created by the recursion equation itself. Where the two lines intersect is the equilibrium value that we call p[*].
  • Define a Discrete Dynamical system
  • In[]:=
    p[0]=20;p[n_]:=.75*p[n-1]+100
  • Show the outputs p[n] as n increass in a table
  • In[]:=
    TableForm[Table[{n,p[n]},{n,0,35}]]
    Out[]//TableForm=
    0
    20
    1
    115.
    2
    186.25
    3
    239.688
    4
    279.766
    5
    309.824
    6
    332.368
    7
    349.276
    8
    361.957
    9
    371.468
    10
    378.601
    11
    383.951
    12
    387.963
    13
    390.972
    14
    393.229
    15
    394.922
    16
    396.191
    17
    397.144
    18
    397.858
    19
    398.393
    20
    398.795
    21
    399.096
    22
    399.322
    23
    399.492
    24
    399.619
    25
    399.714
    26
    399.786
    27
    399.839
    28
    399.879
    29
    399.91
    30
    399.932
    31
    399.949
    32
    399.962
    33
    399.971
    34
    399.979
    35
    399.984
  • Here is a Times Series Graph of our Linear
  • In[]:=
    ListPlot[Table[{n,p[n]},{n,0,35}],JoinedFalse]
    Out[]=
    5
    10
    15
    20
    25
    30
    35
    250
    300
    350
    400
  • Now produce a table of outputs p[n] based on the input of the previous output p[n-1] . Note: Start at n=1 in the table so p[n-1] is initial condition p[0].
  • In[]:=
    TableForm[Table[{p[n-1],p[n]},{n,1,35}]]
    Out[]//TableForm=
    20
    115.
    115.
    186.25
    186.25
    239.688
    239.688
    279.766
    279.766
    309.824
    309.824
    332.368
    332.368
    349.276
    349.276
    361.957
    361.957
    371.468
    371.468
    378.601
    378.601
    383.951
    383.951
    387.963
    387.963
    390.972
    390.972
    393.229
    393.229
    394.922
    394.922
    396.191
    396.191
    397.144
    397.144
    397.858
    397.858
    398.393
    398.393
    398.795
    398.795
    399.096
    399.096
    399.322
    399.322
    399.492
    399.492
    399.619
    399.619
    399.714
    399.714
    399.786
    399.786
    399.839
    399.839
    399.879
    399.879
    399.91
    399.91
    399.932
    399.932
    399.949
    399.949
    399.962
    399.962
    399.971
    399.971
    399.979
    399.979
    399.984
  • The plot of this table creates the values that go on the fundamental graph which displays how we advance the sequence based on the recursion equation.
  • In[]:=
    ListPlot[Table[{p[n-1],p[n]},{n,1,35}]]
    Out[]=
    250
    300
    350
    400
    260
    280
    300
    320
    340
    360
    380
    400
  • To display a fundamental graph with the recursion equation line and the p[n-1]=p[n] or (x=y) we need to combine the previous scatter plot with a line plot.
  • In[]:=
    Show[Plot[{.75x+100,x},{x,0,1000},PlotLegends"Expressions"],Graphics[{PointSize[Large],Red,Point[{100/(1-.75),100/(1-.75)}]}]]
    Out[]=
    200
    400
    600
    800
    1000
    200
    400
    600
    800
    1000
    0.75x+100
    x
  • Combine the lines with the scatter plot points to see how we advance closer to the equilibrium value for this specific DDS.
  • In[]:=
    Show[Plot[{.75x+100,x},{x,0,1000},PlotLegends"Expressions"],Graphics[{PointSize[Large],Red,Point[{100/(1-.75),100/(1-.75)}]}],ListPlot[Table[{p[n-1],p[n]},{n,1,35}],PlotStyleBlack]]
    Out[]=
    200
    400
    600
    800
    1000
    200
    400
    600
    800
    1000
    0.75x+100
    x
  • We can add gridlines at the points to create a similiar effect depicted by a cobweb diagram. Start at the initial condition on the horizontal axis and go up to the recursion equation line and then over to the y=x line and then up to the recrusion equation line dot and keep repeating.
  • In[]:=
    Show[Plot[{.75x+100,x},{x,0,1000},PlotLegends"Expressions",GridLines{Table[p[n-1],{n,1,16}],Table[p[n],{n,1,16}]}],Graphics[{PointSize[Large],Red,Point[{100/(1-.75),100/(1-.75)}]}],ListPlot[Table[{p[n-1],p[n]},{n,1,35}],PlotStyleBlack],ImageSizeLarge]
    Out[]=
    0.75x+100
    x
    Wolfram Cloud

    You are using a browser not supported by the Wolfram Cloud

    Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.


    I understand and wish to continue anyway »

    You are using a browser not supported by the Wolfram Cloud. Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.