A Mathematica notebook to verify the solution in Hoang K. Nguyen’s paper “A new vacuo solution inspired by Buchdahl for pure R2 gravity”
Richard Shurtleff
Abstract
This notebook verifies the solution and many of the equations displayed in the discussion of the solution as presented in Hoang K. Nguyen’s paper “A new family of metrics inspired by Buchdahl for pure gravity”, dated March 31, 2022. In this notebook, the equation numbers and references to pages of text refer to that paper.
URL for this Mathematica notebook:
https://www.wolframcloud.com/obj/shurtleffr/Published/20220401QuadraticGravityBuchdahl1.nb
https://www.dropbox.com/s/r7ccr4nfv12w3wh/20220401QuadraticGravityBuchdahl3.nb?dl=0
A Mathematica notebook to verify the solution in Hoang K. Nguyen’s paper “A new vacuo solution inspired by Buchdahl for pure R2 gravity”
Richard Shurtleff
Abstract
This notebook verifies the solution and many of the equations displayed in the discussion of the solution as presented in Hoang K. Nguyen’s paper “A new family of metrics inspired by Buchdahl for pure
2
R
URL for this Mathematica notebook:
https://www.wolframcloud.com/obj/shurtleffr/Published/20220401QuadraticGravityBuchdahl1.nb
https://www.dropbox.com/s/r7ccr4nfv12w3wh/20220401QuadraticGravityBuchdahl3.nb?dl=0
In[]:=
(*coordinates*)x={r,θ,ϕ,t};(*rradialdistance,θpolarangle,ϕazimuthal,ttime*)Print["The coordinates = ",x,", for i = 1,2,3,4."]Print["Note that time is the fourth coordinate, = t."]
i
x
4
x
The coordinates = {r,θ,ϕ,t}, for i = 1,2,3,4.
i
x
Note that time is the fourth coordinate, = t.
4
x
In[]:=
(*Metricgislowerindices;guisupperindices;coordinates=(r,θ,ϕ,t)with=t.*)(*Eq.(15)lineelement*)(*=-++(+)*)Table[{g[μ_,ν_,r_,θ_,ϕ_]:=0,gu[μ_,ν_,r_,θ_,ϕ_]:=0},{μ,4},{ν,4}];Table[{g[μ,ν,r,θ,ϕ],gu[μ,ν,r,θ,ϕ]},{μ,4},{ν,4}];g[4,4,r_,θ_,ϕ_]:=-Exp[nU[r]]g[1,1,r_,θ_,ϕ_]:=Exp[lAmbda[r]]g[2,2,r_,θ_,ϕ_]:=Exp[mU[r]]g[3,3,r_,θ_,ϕ_]:=Exp[mU[r]]gu[4,4,r_,θ_,ϕ_]:=-Exp[-nU[r]]gu[1,1,r_,θ_,ϕ_]:=Exp[-lAmbda[r]]gu[2,2,r_,θ_,ϕ_]:=Exp[-mU[r]]gu[3,3,r_,θ_,ϕ_]:=Exp[-mU[r]]
g
μν
μν
g
i
x
4
x
2
ds
ν
2
dt
λ
2
dr
μ
2
dθ
2
sin
2
θdϕ
2
Sin[θ]
-2
Sin[θ]
In[]:=
(*m-matrix*)gm[r_,θ_,ϕ_]:=Table[g[μ,ν,r,θ,ϕ],{μ,4},{ν,4}]gum[r_,θ_,ϕ_]:=Table[gu[μ,ν,r,θ,ϕ],{μ,4},{ν,4}]
In[]:=
Print["metric = ",gm[r,θ,ϕ]//MatrixForm];Print"check: = ?=? ",gm[r,θ,ϕ].gum[r,θ,ϕ]//MatrixForm
g
μν
g
ασ
σβ
g
β
δ
α
metric =
g
μν
lAmbda[r] | 0 | 0 | 0 |
0 | mU[r] | 0 | 0 |
0 | 0 | mU[r] 2 Sin[θ] | 0 |
0 | 0 | 0 | - nU[r] |
check: = ?=?
g
ασ
σβ
g
β
δ
α
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
In[]:=
(*Eq.(15)lineelement*)(*=-++(+)*)Print[" = ",Sum[g[μ,ν,r,θ,ϕ]{dr,dθ,dϕ,dt}[[μ]]{dr,dθ,dϕ,dt}[[ν]],{μ,4},{ν,4}]]
2
ds
ν
2
dt
λ
2
dr
μ
2
dθ
2
sin
2
θdϕ
2
ds
2
ds
2
dr
lAmbda[r]
2
dθ
mU[r]
2
dt
nU[r]
2
dϕ
mU[r]
2
Sin[θ]
In[]:=
(*Warm-upexercise,*)Print" = ",D[g[4,4,r,θ,ϕ],x[[1]]]
∂
∂r
g
tt
∂
∂r
g
tt
∂
∂r
g
tt
nU[r]
′
nU
In[]:=
(*cΓChristoffelsymbols*)cΓ[α_,μ_,ν_,r_,θ_,ϕ_]:=Sumgu[α,β,r,θ,ϕ](D[g[ν,β,r,θ,ϕ],x[[μ]]]+D[g[μ,β,r,θ,ϕ],x[[ν]]]-D[g[μ,ν,r,θ,ϕ],x[[β]]]),{β,4}Print"For example, = = ",cΓ[2,1,2,r,θ,ϕ]," and = = ",cΓ[1,1,1,r,θ,ϕ];
1
2
θ
Γ
rθ
2
Γ
12
1
Γ
11
r
Γ
rr
For example, = = [r] and = = [r]
θ
Γ
rθ
2
Γ
12
′
mU
2
1
Γ
11
r
Γ
rr
′
lAmbda
2
In[]:=
(*tableOFΓhasallcomponentsofΓ*)(*tableOFnonzeroΓhasallnonzerocomponentsofΓ*)tableOFΓ=Partition[Flatten[Table[{a1,b,c,cΓ[a1,b,c,r,θ,ϕ]},{a1,4},{b,4},{c,4}]],4];tableOFnonzeroΓ={};For[i=1,i<=Length[tableOFΓ],i++,If[NumericQ[tableOFΓ[[i,4]]]==False,AppendTo[tableOFnonzeroΓ,tableOFΓ[[i]]]]]Print" Table of non-zero components Key: α,μ,ν,"tableOFnonzeroΓ
α
Γ
μν
α
Γ
μν
Table of non-zero components Key: α,μ,ν,
α
Γ
μν
α
Γ
μν
Out[]=
1,1,1,[r],1,2,2,-[r],1,3,3,-[r],1,4,4,[r],2,1,2,[r],2,2,1,[r],{2,3,3,-Cos[θ]Sin[θ]},3,1,3,[r],{3,2,3,Cot[θ]},3,3,1,[r],{3,3,2,Cot[θ]},4,1,4,[r],4,4,1,[r]
′
lAmbda
2
1
2
-lAmbda[r]+mU[r]
′
mU
1
2
-lAmbda[r]+mU[r]
2
Sin[θ]
′
mU
1
2
-lAmbda[r]+nU[r]
′
nU
′
mU
2
′
mU
2
′
mU
2
′
mU
2
′
nU
2
′
nU
2
In[]:=
(*Eq.(20),==ν'/2*)cΓ[1,4,4,r,θ,ϕ]Exp[lAmbda[r]-nU[r]]
r
Γ
tt
1
Γ
44
Out[]=
′
nU
2
In[]:=
(*Eq.(21),==-μ'/2*)cΓ[1,2,2,r,θ,ϕ]Exp[lAmbda[r]-mU[r]]
r
Γ
θθ
1
Γ
22
Out[]=
-[r]
1
2
′
mU
In[]:=
(*Eq.(22),==λ'/2*)cΓ[1,1,1,r,θ,ϕ]
r
Γ
rr
1
Γ
11
Out[]=
′
lAmbda
2
In[]:=
(*WeinbergGrav&Cosmop.133(6.1.5)=Riemann-Christofelcurvaturetensor*)cRC[λ_,μ_,ν_,κ_,r_,θ_,ϕ_]:=D[cΓ[λ,μ,ν,r,θ,ϕ],x[[κ]]]-D[cΓ[λ,μ,κ,r,θ,ϕ],x[[ν]]]+Sum[cΓ[s,μ,ν,r,θ,ϕ]cΓ[λ,κ,s,r,θ,ϕ]-cΓ[s,μ,κ,r,θ,ϕ]cΓ[λ,ν,s,r,θ,ϕ],{s,4}]Print"For example, = = ",Simplify[cRC[1,2,1,2,r,θ,ϕ]];
λ
cRC
μνκ
r
R
θrθ
1
R
212
For example, = = (-[r][r]+[r]+2[r])
r
R
θrθ
1
R
212
1
4
-lAmbda[r]+mU[r]
′
lAmbda
′
mU
2
′
mU
′′
mU
In[]:=
(*cR=Riccitensor=,wherewefollowNguyenandDodelsonp.32.OppositesignfromWeinbergp.135(6.2.5)=,notelowerσ.*)cR[α_,β_,r_,θ_,ϕ_]:=Simplify[Sum[cRC[σ,α,β,σ,r,θ,ϕ],{σ,4}]]Print["For example, = = ",cR[4,4,r,θ,ϕ]," and = ",Simplify[cR[1,1,r,θ,ϕ]]];
R
αβ
σ
cR
αβσ
R
αβW
σ
cR
ασβ
R
tt
R
44
R
rr
For example, = = (-[r][r]+2[r][r]+[r]+2[r]) and = (-2[r]-[r]+[r](2[r]+[r])-4[r]-2[r])
R
tt
R
44
1
4
-lAmbda[r]+nU[r]
′
lAmbda
′
nU
′
mU
′
nU
2
′
nU
′′
nU
R
rr
1
4
2
′
mU
2
′
nU
′
lAmbda
′
mU
′
nU
′′
mU
′′
nU
In[]:=
(*tableOFRμνhasallcomponentsof*)(*tableOFnonzeroRμνhasallnonzerocomponentsof*)tableOFRμν=Partition[Flatten[Table[{a1,b,cR[a1,b,r,θ,ϕ]},{a1,4},{b,4}]],3];tableOFnonzeroRμν={};For[i=1,i<=Length[tableOFRμν],i++,If[NumericQ[tableOFRμν[[i,3]]]==False,AppendTo[tableOFnonzeroRμν,tableOFRμν[[i]]]]]Print[" Table of non-zero components Key: {μ,ν,}"]tableOFnonzeroRμν
R
μν
R
μν
R
μν
R
μν
Table of non-zero components Key: {μ,ν,}
R
μν
R
μν
Out[]=
1,1,(-2[r]-[r]+[r](2[r]+[r])-4[r]-2[r]),2,2,4+[r][r]-2[r]-[r][r]-2[r],3,3,4+[r][r]-2[r]-[r][r]-2[r],4,4,(-[r][r]+2[r][r]+[r]+2[r])
1
4
2
′
mU
2
′
nU
′
lAmbda
′
mU
′
nU
′′
mU
′′
nU
1
4
-lAmbda[r]
lAmbda[r]
mU[r]
′
lAmbda
′
mU
mU[r]
2
′
mU
mU[r]
′
mU
′
nU
mU[r]
′′
mU
1
4
-lAmbda[r]
2
Sin[θ]
lAmbda[r]
mU[r]
′
lAmbda
′
mU
mU[r]
2
′
mU
mU[r]
′
mU
′
nU
mU[r]
′′
mU
1
4
-lAmbda[r]+nU[r]
′
lAmbda
′
nU
′
mU
′
nU
2
′
nU
′′
nU
In[]:=
(*Eq.(23),=+-+*)Expand[cR[4,4,r,θ,ϕ]Exp[lAmbda[r]-nU[r]]]
R
tt
λ-ν
ν''
2
2
(ν')
4
ν'λ'
4
ν'μ'
2
Out[]=
-[r][r]+[r][r]+[r]+[r]
1
4
′
lAmbda
′
nU
1
2
′
mU
′
nU
1
4
2
′
nU
′′
nU
2
In[]:=
(*Eq.(24),-=-+++-*)Expand[-cR[2,2,r,θ,ϕ]Exp[lAmbda[r]-mU[r]]]
R
θθ
λ-μ
λ-μ
μ''
2
2
(μ')
2
ν'μ'
4
λ'μ'
4
Out[]=
--[r][r]+[r]+[r][r]+[r]
lAmbda[r]-mU[r]
1
4
′
lAmbda
′
mU
1
2
2
′
mU
1
4
′
mU
′
nU
′′
mU
2
In[]:=
(*Eq.(25),-=+++μ''+--*)Expand[-cR[1,1,r,θ,ϕ]]
R
rr
ν''
2
2
(ν')
4
2
(μ')
2
ν'λ'
4
λ'μ'
2
Out[]=
-[r][r]+[r]-[r][r]+[r]+[r]+[r]
1
2
′
lAmbda
′
mU
1
2
2
′
mU
1
4
′
lAmbda
′
nU
1
4
2
′
nU
′′
mU
′′
nU
2
From text on page 3, second column: “Finally, we substitute {p’,q’;p’’,q’’;...} in (40-47) into {ν’,λ’,μ’; ν’’,λ’’,μ’’;...} in (29-39)”
Once the formulas from (40-47) are substituted in (29-39), the new versions of (29-39) will be distinguished by the letter “A”. Thus, for ν’(r) = nup[r], the new version is ν’(r) = nupA[r].
Once the formulas from (40-47) are substituted in (29-39), the new versions of (29-39) will be distinguished by the letter “A”. Thus, for ν’(r) = nup[r], the new version is ν’(r) = nupA[r].
From the text page 3, second column, “...Maxima Online determines that the left-hand-sides of Eqs. (12), (13), (14) vanish identically. In addition, it confirms that R(r) = ± f(r) (48)”
The substitutions indicated in the text can be carried out.
The substitutions indicated in the text can be carried out.
Thus we confirm the assertions that “the left-hand-sides of Eqs. (12), (13), (14) vanish identically. In addition, it confirms that R(r) = ± f(r) (48)”
https://www.wolframcloud.com/obj/shurtleffr/Published/20220401QuadraticGravityBuchdahl1.nb
https://www.dropbox.com/s/r7ccr4nfv12w3wh/20220401QuadraticGravityBuchdahl3.nb?dl=0
Thus we confirm the assertions that “the left-hand-sides of Eqs. (12), (13), (14) vanish identically. In addition, it confirms that R(r) = ± f(r) (48)”
https://www.wolframcloud.com/obj/shurtleffr/Published/20220401QuadraticGravityBuchdahl1.nb
https://www.dropbox.com/s/r7ccr4nfv12w3wh/20220401QuadraticGravityBuchdahl3.nb?dl=0