Expressions for C_1, C_2, C_3 implied by Theorem 3
In[]:=
C1=^(1/2);C2=-1/6*D3/D2*γ*^(-1)+*^(-1)/2;C3=^(-3/2)*6-12*D3D2*+D33D2*γ*+*(D3^2/8/D2^2-1/24*D4/D2)+2-D3^218D2^2*γ^2-12*^2-D3^28D2^2*^2;
κ
2
κ
2
μ
2,c
κ
2
κ
2
μ
3,c
μ
2,b
κ
2
μ
2,c
μ
4
μ
2,a
κ
2
κ
2
μ
2,c
κ
2
Moments of A_n, A_n^3\hat{C}_2/\hat{C}_1, and A_n^5\hat{C}_2/\hat{C}_1 as computed in Sections C.1.1 - C.1.5
EA11=-^(-3/2)/2*γ-^(-3/2)*+1/2*^(-1/2);EA1=n^(-1/2)*EA11;EA21=-1/2/*+1/4*^2-γ/(^2)*-4/(^2)*-1/*-2/(^2)**+2/(^3)*γ^2+8*γ/()^3*+8/(^3)*^2-2/^2*-2/(^2)*+3;EA2=1+n^(-1)*EA21;EA31=^(-3/2)*-72*γ-6*+32**;EA3=n^(-1/2)*EA31;EA41=^(-2)*-3^2+6**+2*γ*+12*+3**+32**^2+6**+12+6**+4-12*(-^2)-8*γ^2-12*γ*-24*-24*γ*-12**-72-16*γ*-24**-48*-48*^2+9*(-^2)+36*γ^2+36*()+144*γ*+36*()+144*^2-6**-24*-6**-24*+30*^2;EA4=3+1/n*EA41;EA3C=EA3*C2/C1+3/2*n^(-1/2)*^(-2)*-D3D2*(-3^2)3+12*D3D2*(γ^2+2γ*)-3**(γ+2)2+(2-D3/D2)*++2;EA5C=(10*EA3-15*EA1)*C2/C1+5*3/2*n^(-1/2)*^(-2)*-D3D2*(-3^2)3+12*D3D2*(γ^2+2γ*)-3**(γ+2)2+(2-D3/D2)*++2;
κ
2
κ
2
μ
2,c
κ
2
μ
2,d
κ
2
μ
2,2
μ
2,d
κ
2
κ
2
μ
2,d
κ
2
μ
2,b
κ
2
μ
1,2,d
κ
2
μ
2,c
μ
2,d
κ
2
κ
2
μ
2,c
κ
2
μ
2,c
κ
2
μ
2,a
κ
2
μ
3,c
κ
2
μ
2,c
κ
2
μ
2,d
κ
2
μ
4
κ
2
κ
2
μ
1,2,d
μ
2,d
μ
2,b
κ
2
μ
2,2
κ
2
μ
2,d
μ
2,d
μ
2,c
μ
2,a
κ
2
μ
1,3,d
μ
3,c
μ
4
κ
2
κ
2
μ
2,d
μ
2,b
κ
2
μ
2,c
κ
2
μ
1,2,d
μ
2,b
κ
2
μ
2,c
μ
2,c
μ
2,d
μ
2,a
κ
2
μ
2,c
μ
4
κ
2
κ
2
μ
2,b
κ
2
μ
2,c
μ
2,a
κ
2
μ
2,c
κ
2
μ
2,2
μ
2,a
κ
2
μ
1,3,d
μ
3,c
κ
2
κ
2
μ
4
κ
2
κ
2
μ
2,c
κ
2
μ
2,c
μ
2,c
μ
2,b
μ
3,c
μ
2,a
κ
2
μ
4
κ
2
κ
2
μ
2,c
κ
2
μ
2,c
μ
2,c
μ
2,b
μ
3,c
μ
2,a
Moments of W_n
In[]:=
M1=EA1+n^(-1/2)*1*C2/C1;M2=EA2+2*n^(-1/2)*EA3C+2*n^(-1)*EA4C+n^(-1)*3*(C2/C1)^2;M3=EA3+3*n^(-1/2)*3*C2/C1;M4=EA4+4*n^(-1/2)*EA5C+4*n^(-1)*EA4C*5+6*n^(-1)*15*(C2/C1)^2;
Cumulants of W_n
In[]:=
K12=M1*n^(1/2);K22=n*(M2-1-M1^2);K31=n^(1/2)*(M3-3M1);K41=n*(M4-3-4M3*M1-6*(M2-1)+12*M1^2);
Expression of A(x^2)
In[]:=
A=-2*x*(1/2*(K22+K12^2)+1/24*(K41+4*K12*K31)*(x^2-3)+1/72*K31^2*(x^4-10*x^2+15));
In[]:=
Collect[FullSimplify[A],x]
Out[]=
--4(D2+D3)(2D2+D3)+9+3(-2-4D2D3-3+D2D4)+6D2(2D2+D3)γ-6D2(2D2+D3)γ-x-12+18+36(+2)-36γ-9-18+9-2+-4
2
(2D2+D3)
5
x
2
γ
36
2
D2
3
κ
2
1
36
2
D2
3
κ
2
3
x
2
γ
2
(2D2+D3)
3
κ
2
2
D2
2
D3
κ
2
μ
4
μ
2,c
κ
2
μ
2,d
1
36
2
D2
3
κ
2
2
D2
2
γ
2
D2
κ
2
μ
4
2
D2
κ
2
μ
2,a
μ
2,b
2
D2
μ
2,c
2
D2
2
μ
2,c
2
D2
κ
2
μ
2,c
μ
2,d
2
D2
2
κ
2
μ
2,2
2
μ
2,d
μ
1,2,d
The expression of A(x^2)if we choose \phi according to the reversed KL divergence as in Diciccio et al.
In[]:=
Collect[FullSimplify[A],x]/.{D21,D3-2,D46}
Out[]=
-x-12+18+36(+2)-36γ-9-18+9-2+-4
1
36
3
κ
2
2
γ
κ
2
μ
4
κ
2
μ
2,a
μ
2,b
μ
2,c
2
μ
2,c
κ
2
μ
2,c
μ
2,d
2
κ
2
μ
2,2
2
μ
2,d
μ
1,2,d