In[]:=
DSolve[α''[x]+ρSin[α[x]]==0,α[x],x]
Out[]=
α[x]-2JacobiAmplitude,α[x]2JacobiAmplitude
1
2
(2ρ+)
,
1
2
(x+)
2
4ρ
2ρ+
1
1
2
(2ρ+)
,
1
2
(x+)
2
4ρ
2ρ+
1
In[]:=
JacobiAmplitude+O[x]^2
x
2
(2ρ+)
,
1
4ρ
2ρ+
1
Out[]=
1
2
2ρ+
x+
1
2
O[x]
In[]:=
JacobiAmplitude-JacobiAmplitude+O[x]^2
x
2
(2ρ1+)
,
1
4ρ1
2ρ1+
1
x
2
(2ρ2+)
,
2
4ρ2
2ρ2+
2
Out[]=
1
2
2ρ1+
-
1
2ρ2+
x+
2
2
O[x]
In[]:=
sub={->a^2-2ρ1,->a^2-2ρ2}
1
2
Out[]=
{-2ρ1,-2ρ2}
1
2
a
2
2
a
In[]:=
JacobiAmplitude/.sub
x-ξ2
2
(2ρ1+)
,
1
4ρ1
2ρ1+
1
Out[]=
JacobiAmplitude(x-ξ2),
1
2
2
a
4ρ1
2
a
In[]:=
JacobiAmplitude/.sub
x-ξ2
2
(2ρ2+)
,
2
4ρ2
2ρ2+
2
Out[]=
JacobiAmplitude(x-ξ2),
1
2
2
a
4ρ2
2
a
In[]:=
F[a_,r_,ξ_]:=JacobiAmplitudeξ2a,-JacobiAmplitudea,
r
a^2ξ
(1-ξ)
2
-r
a^2(1-ξ)
In[]:=
FindRoot[F[a,1000,0.1],{a,-10,-0.1}]
Out[]=
{a-2.88328}
In[]:=
FindRoot[F[0.0001,r,0.55],{r,40}]
Out[]=
{r4.79313}
In[]:=
r=.;
In[]:=
4IntegrateDJacobiAmplitude(x-ξ)2a,,x^2,{x,0,ξ}
r
a^2ξ
Out[]=
2aJacobiEpsilon,ξ
aξ
2
r
2
a
In[]:=
4IntegrateDJacobiAmplitude(x-ξ)2a,-,x^2,{x,ξ,1}
r
a^2(1-ξ)
Out[]=
2aJacobiEpsilona(1-ξ),(-1+ξ)
1
2
r
2
a
In[]:=
2aJacobiEpsilon,ξ+JacobiEpsilona(1-ξ),(-1+ξ)
aξ
2
r
2
a
1
2
r
2
a
Out[]=
2aJacobiEpsilona(1-ξ),(-1+ξ)+JacobiEpsilon,ξ
1
2
r
2
a
aξ
2
r
2
a
In[]:=
In[]:=
IntegrateExpI2JacobiAmplitude(x-ξ)2a,,{x,0,ξ}
r
a^2ξ
Out[]=
ξ
∫
0
2JacobiAmplitudea(x-ξ),ξ
1
2
r
2
a
In[]:=
2DJacobiAmplitude(x-ξ)2a,,x/.x->0
r
a^2ξ
Out[]=
aJacobiDN,ξ
aξ
2
r
2
a
In[]:=
2DJacobiAmplitude(x-ξ)2a,,x/.x->ξ
r
a^2ξ
Out[]=
a
In[]:=
a^2JacobiDN,ξ
aξ
2
r
2
a
Out[]=
2
a
aξ
2
r
2
a
In[]:=
Plot[F[a,1000,0.1],{a,-10,10}]
Out[]=
In[]:=
Plot[F[a,100,0.1],{a,-10,10}]
Out[]=
In[]:=
Plot[F[a,10,0.1],{a,-10,10}]
Out[]=
In[]:=
Plot[{F[a,10,0.1],F[a,100,0.1],F[a,1000,0.1],F[a,10000,0.1]},{a,-10,10},PlotLabel->"F[a,r,0.1]",AxesLabel->{"a",None},PlotLegends->{"r=10","r=100","r=1000","r=10000"}]
Out[]=
In[]:=
In[]:=
′′
f
1,2
λ
1,2
f
1,2
-ϵ
τ
f
1,2
λ
1,2
r
Δ
r
Δ-1
Out[]=
λ
1,2
r
Δ
r
-1+Δ
In[]:=
(*Thesolutionmatchingwithfirstderivativeat$\xi=\xi_2$reads(uptoirrelevantcommonnormalizationfactor)*)(ϵ,ξ)cos((ξ-))+sin((ξ-));(ϵ,ξ)cos((ξ-))+sin((ξ-));\[NewLine]+
f
1
K
1
ξ
2
B
K
1
K
1
ξ
2
f
2
K
2
ξ
2
B
K
2
K
2
ξ
2
K
1,2
λ
1,2
ϵ
τ