WOLFRAM NOTEBOOK

q
k
O
k
·
u
(α,γ);
u
(α,γ)\[NewLine]{cosh(γ)cos(α),cosh(γ)sin(α),sinh(γ)}
f
k
T
O
k
·
F
k
;
f
k
·
u
(α,γ)
1
2
±
4
2
f
k
-1+2
2
(Δ
F
)
1;
2
(
F
·Δ
F
)
2
F
+
F
·Δ
F
In[]:=
exp
dθ
C
(θ)·
F
(θ)
2ν(t+
t
0
)
F
lim
N
exp
N-1
k0
Δ
C
k
·
F
k
2ν(t+
t
0
)
F
;\[NewLine]Δ
C
k
C
(2k+1)π
N
-
C
(2k-1)π
N
;
In[]:=
C
θ
R{cosθ,sinθ,0};Δ
C
k
2Rsin
π
N
\[NewLine]-sin
2πk
N
,cos
2πk
N
,0
In[]:=
Eq=Expand[(f.q+1/2)^2==(f.f+f.q+1/4)+I(f.q+1/2)]
Out[]=
1
4
+f.q+
2
(f.q)
1
4
+
2
+f.f+(1+)f.q
In[]:=
Solve[Eq,f.q]
Out[]=
f.q
1
2
-
(-1+2)+4f.f
,f.q
1
2
+
(-1+2)+4f.f
In[]:=
DC[k_,M_]:=2Sin[Pi/M]{-Sin[2Pik/M],Cos[2Pik/M],0};
In[]:=
RandomInitialF0:=f0=RandomReal[{-1,1},3]+I{RandomReal[{-1,1}],RandomReal[{0,1}],RandomReal[{-1,1}]};
In[]:=
ArgMinList[L_List]:=Position[L,Min@@L];ArgMaxList[L_List]:=Position[L,Max@@L];MyNorm[V_]:=Evaluate[Sqrt[Re[V].Re[V]+Im[V].Im[V]]];MySqr[V_]:=Evaluate[Re[V].Re[V]+Im[V].Im[V]];
In[]:=
XY[R_,{a_,b_,c_},z_]:=Inverse[{{Re[a],Re[b]},{Im[a],Im[b]}}].{Re[R]-zIm[c],Im[R]+zRe[c]};
QSol[f_,σ_]:=Block[{x,y,z},{x,y}=XY[1/2(I+σSqrt[4f.f-1+2I]),f,z];{x,y,Iz}/.Solve[x^2+y^2-z^2==1,{z}]]//Quiet;
In[]:=
NumericVectors[X_List]:=Select[X,#==Select[#,NumericQ]&]
In[]:=
NumericVectors[{{1,2,3},{a,2,4},{I,2,6}}]
Out[]=
{{1,2,3},{,2,6}}
In[]:=
In[]:=
(#.#)&/@QSol[{1,I,3},-1]//Simplify
Out[]=
{1,1}
In[]:=
RandomChoice[{1}]
Out[]=
1
In[]:=
ClearAll[RW];
In[]:=
RW[M_,f0_]:=Block[{dist,f,flist,O,f1,q,qq,X,n,norms},f=f0;flist={f};dist=CircularRealMatrixDistribution[3];For[k=0,k<M,k++,O=RandomVariate[dist];f1=Transpose[O].f;X=Join[QSol[f1,-1],QSol[f1,1]];qq=NumericVectors[Select[X,Re[#[[3]]]==0&]];If[Length[qq]>0,(*Echo[Length[qq],"qq after real beta selected :"];*)qq=NumericVectors[Select[qq,Im[(f+O.#)].DC[Length[flist],M]>=0&]];(*Echo[Length[qq],"qq after Im F DC >0 selected :"];*)If[Length[qq]>0,norms=MyNorm[#]&/@qq;f+=O.qq[[ArgMinList[norms][[1,1]]]];AppendTo[flist,f]];(*If*)(*Echo[Length[flist],"flist:"];*)];];(*While*)flist];(*Block*)
In[]:=
StatisticalDistributions[M_,L_,K_,WhichTable_]:=Block[{stats,l,datas,names},datas=Transpose[WhichTable[Block[{f0,rw},f0=RandomInitialF0;rw=RW[M,f0];{Log[MyNorm[rw[[#]]-f0]]&/@Range[K,Length[rw]],MyNorm[rw[[#]]-rw[[#-1]]]&/@Range[K,Length[rw]],Re[-(Cross[rw[[#]],rw[[#-1]]])^2]&/@Range[K,Length[rw]]}],{l,L}]];names={"walk","step",κ};{datas,names}];
In[]:=
{datas,names}=StatisticalDistributions[1000,10000,10,ParallelTable];
In[]:=
Dimensions[datas]
Out[]=
{3,10000}
In[]:=
WalkPlot[stat_,part_,funcs_]:=Block[{gaps,CDFTail,ld,mlen,tail,model,x},mlen=Floor[Mean[Length[#]&/@stat]];(*Echo[mlen];*)gaps=#[[;;mlen]]&/@Select[stat,Length[#]>=mlen&];(*Echo[Dimensions[gaps]];*)ld=Mean[#]&/@Transpose[gaps];data=Transpose[{Log[Range[mlen]],ld}];tail=Floor[partmlen];model=LinearModelFit[data[[-tail;;]],funcs,ξ];Print["random walk :"];Print[Quiet[model["ParameterTable"]]];Show[ListPlot[data[[-tail;;]],PlotStyle{Red,Thick},PlotLegends->{"data"}],Plot[model["BestFit"],{ξ,Log[mlen-tail],Log[mlen]},PlotStyle{Blue,Dashed},PlotLegends->{"fit"}],PlotLabel->model["BestFit"]/.ξ->Log[Steps],AxesLabel->{Log[Steps],Log[Dist]},PlotRange->Full]];
In[]:=
WalkPlot[datas[[1]],1/6,{1,ξ}]
random walk :
Estimate
Standard Error
t-Statistic
P-Value
1
-1.51345
0.037324
-40.5488
1.99343×
-28
10
ξ
0.831889
0.00713645
116.569
1.5485×
-42
10
Out[]=
data
fit
Wolfram Cloud

You are using a browser not supported by the Wolfram Cloud

Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.


I understand and wish to continue anyway »

You are using a browser not supported by the Wolfram Cloud. Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.